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Abstract
This paper is devoted to the numerical approximation of a three temperature plasma model:
one for the ions, one for the electrons and one for the radiation (photons). A reformulation of
the model is proposed that allows to build a convex combination-based scheme that uncon-
ditionally satisfies a maximum principle, at each sub-iteration of the non-linear iterative
process. This yields a very robust scheme that can handle stiff source terms. In addition, the
methodology is extended to include the contribution of a radiative flux (Rosseland diffusion
approximation) and electronic and ionic conductivities (Spitzer–Härm diffusion approxima-
tion). Several numerical results are carried out to demonstrate the interest of the numerical
approach.

Keywords Three temperature model · Numerical schemes · Plasma physics · Radiative
transfer · Non-equilibrium radiation diffusion

Mathematics Subject Classification 65M12 · 35Q35 · 82D10 · 82A25

1 Introduction

Background
The relaxation between the electronic and ionic temperatures toward the same temperature
happens on time scales larger than the ones involved to reach quasi-neutral regimes or required
for the electron and ion distribution functions to reach Maxwellian equilibrium distributions
[1]. This point has some importance since inmany practical applications, such as astrophysics
[10] or inertial confinement fusion [7], the characteristic times of interest can be of the
same order of the temperature relaxation times. When this is the case, a two-temperature
hydrodynamics model is required [1]. In addition, in the presence of strong radiative effects,
the modeling of photon transport is also required. To address this issue, different models are
available depending on the required level of accuracy [11]. In the present work, we restrict
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ourselves to the study of a gray-diffusion model. However, the presented methodology can
be extended to multi-group and/or transport models. This will be investigated in the future.

The discretisation of such radiation-hydrodynamic models has been largely investigated.
When the applications require a transport-type modeling, one of the most used methods to
simulate thermal radiation propagation is the Implicit Monte-Carlo method. Early studies
can be found in [6] where the Implicit Monte-Carlo method is applied to a two-temperature
model (only one equilibrium temperature is considered for matter). We also refer to [3]
where the Implicit Monte-Carlo method is extended to the study of three temperature models
and several numerical approaches are presented and compared for describing the coupling
between radiation, electron and ion energies. We also mention the work [16] in which an
estimator of the time step is proposed in order to satisfy a discrete maximum principle since
Implicit Monte-Carlo methods can produce nonphysical overshoots of material temperatures
when large time steps are used [9].

If the applications under consideration allow diffusion-type approximations, standard
Newton-Raphson or fix point algorithms are also widely used to solve three temperature
models [13]. While iterative numerical strategies to deal with non-linear source terms are
forbidden when working with Implicit Monte-Carlo method, they can be very effective here.
We refer to [4] for numerical comparisons between several simulation codes for solving
three temperature models. Here, we also mention [5,12] and the references therein where
Jacobian-free Newton-Krylov methods are considered to derive efficient algorithms for radi-
ation diffusion equations. It should be noticed that the time integration of non-equilibrium
radiation diffusionmodels has been largely investigated in [8] and references therein. Because
of the stiffness of the different physical terms, a careful numerical analysis is required before
considering linearisation or operator splitting strategies. We stress the numerical difficulties
encountered when dealing with stiff and nonlinear source terms with enough accuracy and
stable discretisations.

Present approach and outline
The present work introduces a numerical approach that differs from all the previous studies:
a model reformulation is proposed that allows to build a convex combination-based scheme
that unconditionally satisfies a maximum principle at each sub-iteration of the non-linear
iterative process. This yields a very robust three temperature scheme that can handle stiff
source terms. In addition, the methodology is extended to include the contribution of a
radiative flux (Rosseland diffusion approximation) and electronic and ionic conductivities
(Spitzer–Härm diffusion approximation). The originality of this work does not come from
the temporal discretisation which relies on standard implicit–explicit strategies. However,
we believe the original idea comes from the reformulation of the model with matched T 4

function (Sect. 2.3). Indeed, this linearisation allows the derivation of schemes with strong
L∞ stability properties among other fundamental properties such as energy conservation,
asymptotic-preserving. In addition, it is shown that the different coefficients involved in
the reformulation are never singular (coefficients βα and δie) and carefully set to enforce
a correct energy conservation. A convergence result (under CFL condition) of the method
proposed is also provided. We point out that a direct discretisation of the initial model using
a standard Newton-Raphson algorithm does not ensure a discrete maximum principle at each
sub-iteration. Even if at convergence the correct solutions can be obtained, during the iterative
process the temperature profiles are not bounded and may for example become negative. In a
second part, the 1D extension is studied and the different scheme properties are clearly stated.
We believe the methodology presented here naturally extend to multi-dimension settings.
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The paper is organized as follows. We start by introducing the studied set of governing
equations with its main properties. In order to prepare the derivation of an efficient numerical
scheme, a reformulation of the model is presented. Next, in the 0D case (no spatial variation),
the scheme is derived and strong properties are proved. Finally, the procedure is extended
to the 1D slab case to include the radiative flux. Several iterative methods are proposed and
compared. The contributions of the electronic and ionic conductivities are also included.
Several numerical tests are carried out to illustrate the efficiency of the numerical approach.

2 Governing Equations and Reformulation

2.1 Set of Equations

In the present work a hot plasma made of ions, electrons and photons is considered. The
hydrodynamic evolution of the particles is chosen at rest (mass and momentum evolution)
and we focus on the energy evolution of each particle population. This approximation is
relevant in applications where the material motion can be neglected or, can be removed
by appropriate operator splitting strategies. In this framework, we consider that the energy
evolution of photons (radiation), electrons and ions can be respectively described by the
following set of equations

⎧
⎪⎨

⎪⎩

∂t Er + ∇ · Fr = cσP (aTe4 − Er ) + Qr ,

∂t Ee + ∇ · Fe = cσP (Er − aTe4) + cκ(Ti − Te) + Qe,

∂t Ei + ∇ · Fi = cκ(Te − Ti ) + Qi ,

(1)

where Er , Ee and Ei are respectively the radiative, electronic and ionic energy densities. The
electronic, ionic temperatures are respectively written Te and Ti and the radiative temperature
Tr is defined by Er = aT 4

r . The speed of light c and Stefan constant a are strictly positive.
The absorption opacity σP (P for Planck) is assumed to be a given non-linear function of Te
and Tr . κ is a positive relaxation coefficient of the electronic and ionic temperatures which
non-linearly depends on Te and Ti . Finally Fr , Fi and Fr are energy fluxes. Although the set
of equations (1) is general, we restrict ourselves to the diffusion approximation framework
whereby

• Rosseland diffusion approximation is considered for the photons. Where the radiative
flux is [11]

Fr = − c

3σR
∇Er , (2)

where the Rosseland opacity σR depends non linearly on Te and Tr .
• Spitzer–Härm diffusion approximation is used for the electronic and ionic thermal con-

ductivities. Assuming ions and electrons distributions are local Maxwellians [14], the
electronic and ionic thermal conductivities are written as

Fα = −λ
′
α∇Tα, λ

′
α = KαT

5/2
α , α = e, i, (3)

where Ke and Ki are plasma depending coefficients. We now define the heat capacities
Cv,α as

dEα

dTα

= ρCv,α(Tα) with α = e, i, (4)

where ρ is the mass density of the fluid which is here restricted to be constant in time
but non-uniform in space.
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2.2 Model Properties

The main model properties of interest here are

• Total energy conservation.

Adding the three equations of (1) leads to the following total energy balance law

∂t (Ei + Ee + Er ) + ∇ · (Fi + Fe + Fr ) = Qi + Qe + Qr . (5)

In the absence of source terms (i.e. Qα = 0, ∀α), Eq. (5) is a conservation law.

• Maximum principle.

In the case with no source term (Qα = 0, ∀α), if the electronic, ionic and radiative temper-
atures are bounded at the initial time and at the boundaries then they remain bounded at all
time. More precisely if

max(Te(t = 0, x), Ti (t = 0, x), Tr (t = 0, x)) ≤ K ,

for K ∈ R
+

 then

max(Te(t, x), Ti (t, x), Tr (t, x)) ≤ K ∀t ∈ R
+.

Such a property is studied in [9] and references therein.

• Stability of the state Ti = Te = Tr .

In the 0D case (no spatial variation) with no source term, all states such that Ti = Te = Tr
are equilibrium states (see “Appendix”).

• Asymptotic behavior in the limit where σP and κ tend to infinity.

Let τ be the characteristic time of evolution and ε the dimensionless quantity

ε = 1/max(cσPτ, κτ),

to be eventually made vanishingly small. Scaling the set of Eq. (1) with τ and letting ε tend
to zero gives to first order in ε (by using a standard Hilbert expansion)

T 0
i = T 0

e = T 0
r = Teq ,

where index zero indicates the first order term in the Hilbert decomposition. In addition, the
time evolution of Teq (obtained by adding the three energy equation at next order in ε) is
given by

∂t (Ei (Teq) + Ee(Teq) + Er (Teq)) + ∇ · (Fi (Teq) + Fe(Teq) + Fr (Teq)) = Qi + Qe + Qr .

This last equation is called the (one temperature) equilibrium diffusion limit.

2.3 Model Recasting with Matched T4 Functions

In order to prepare the derivation of a suitable numerical scheme, a reformulation of the
model (1) is here suggested. For clarity, this model recasting is presented here in the 0D case
(no spatial variation). The complete model will be studied in the next sections. We highlight
that this procedure is not trivial and is one of the key points for the derivation of an adapted
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numerical scheme. Here, model (1) is expressed for the variables φα = aT 4
α , where α = r ,

e, i . Note that Er = φr = aT 4
r . Using these notations one first has

⎧
⎪⎨

⎪⎩

∂tφr = cσP (φe − φr ) + Qr ,

∂t Ee = cσP (φr − φe) + cκ(Ti − Te) + Qe,

∂t Ei = cκ(Te − Ti ) + Qi .

(6)

The temporal derivatives of the electronic and ionic energy can be expressed as function of
the temporal derivatives of φe and φi since

∂t Eα = dEα

dφα

∂tφα = 1

βα

∂tφα, α = e, i

where

βα = dφα

dEα

= dφα

dTα

dTα

dEα

= 4aT 3
α

ρCv,α

> 0. (7)

Moreover, the (Ti − Te) relaxation term may be expressed differently1 by introducing δie

δie = Ti − Te
φi − φe

,

that satisfies the two properties

Property 1 The parameter δie is always positive.

Proof By using the definition ofφα = aT 4
α (withα = e, i, r ) (which is an increasing function

of Tα) gives the result. Indeed if Ti ≥ Te then φi ≥ φe and if Ti ≤ Te then φi ≤ φe. 	

Property 2 In the limit φi − φe tends to zero, the parameter δie is not singular.

Proof A direct Taylor expansion in the small parameter φi − φe and using the definition of
the parameter δie directly gives

lim
Ti → T ,

Te → T ,

δie = 1

4aT 3 > 0.

	

Finally, the model is recast in the quasi-linear form

⎧
⎪⎨

⎪⎩

∂tφr = cσP (φe − φr ) + Qr ,

∂tφe = βecσP (φr − φe) + βecκδie(φi − φe) + βeQe,

∂tφi = βi cκδie(φe − φi ) + βi Qi .

(8)

As shown in the next section, the model is now amenable to an efficient discretization.
Of course, the model (8) remains nonlinear because of the functions σP , κ , σR , βα and δ.
In addition, because of the stiffness of the different terms, fully implicit time treatments are
mandatory in order to keep reasonable time steps. Indeed, in the regimes under study different
stiffness in the set of equations appear, requiring a careful stability analysis.

1 This simple trick, that will allow to build an unconditionally stable scheme, is new to our knowledge.
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3 Numerical Analysis in the 0D Case (No Spatial Variation)

We start the numerical section considering the 0D case (no spatial variation) without source
terms. In this setting, system (8) simplifies into

⎧
⎪⎨

⎪⎩

∂tφr = cσP (φe − φr ),

∂tφe = βecσP (φr − φe) + βecκδie(φi − φe),

∂tφi = βi cκδie(φe − φi ).

(9)

3.1 Numerical Scheme

The temporal discretisation chosen consist in a standard backward-Euler scheme. The time
step is written Δt = tn+1 − tn and the quantities considered at time tn are denoted by the
index n. For more clarity, the quantities σP and κ are written as constant quantities in (10).
However, in practice they are nonlinear function of the temperatures. Their time discretisation
is discussed in “Appendix 1”. The time discretisation of (9) reads

⎧
⎪⎨

⎪⎩

φn+1
r = φn

r + ΔtcσP (φn+1
e − φn+1

r ),

φn+1
e = φn

e + Δtβn+1
e cσP (φn+1

r − φn+1
e ) + βn+1

e cκδn+1
ie (φn+1

i − φn+1
e ),

φn+1
i = φn

i + βn+1
i cκδn+1

ie (φn+1
e − φn+1

i ).

(10)

with

δn+1
ie = T n+1

i − T n+1
e

φn+1
i − φn+1

e
,

and where the discretisation of βα is

βn+1
α = φn+1

α − φn
α

En+1
α − En

α

. (11)

This choice of discretisation for the coefficient βn+1
α is justified by the following arguments.

We start, setting

Iα =
∫ tn+1

tn
∂t Eαdt = Eα(tn+1) − Eα(tn).

Here, we point out that in order to make the model quasi-linear we work with the variables
φα so that we have the requirement that Iα/Δt is approached by

Iα

Δt
≈ 1

βn+1
α

φn+1
α − φn

α

Δt
. (12)

Now, one can think in “the best” discretisation of βn+1
α . A possible condition is to ensure

that the numerical approximation (12) is exact. Consequently, it follows that

βn+1
α = φn+1

α − φn
α

Eα(tn+1) − Eα(tn)
.

Finally the definition (11) is considered.

Remark It will be shown in Sect. (3.3) that the discretisation considered for the coefficient
βα enables to prove an important energy conservation property.
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Now, in order to numerically solve the one-step fully implicit scheme (10), we propose
the following iterative linear-implicit method

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ
n+1,k+1
r = φn

r + ΔtcσP (φ
n+1,k+1
e − φ

n+1,k+1
r ),

φ
n+1,k+1
e = φn

e + Δtβn+1,k
e cσP (φ

n+1,k+1
r − φ

n+1,k+1
e )

+δ
n+1,k
ie β

n+1,k
e cκ(φ

n+1,k+1
i − φ

n+1,k+1
e ),

φ
n+1,k+1
i = φn

i + Δtδn+1,k
ie β

n+1,k
i cκ(φ

n+1,k+1
e − φ

n+1,k+1
i ),

(13)

where φn+1,k
α denotes the kth sub-iteration at time tn+1 for quantity φα and we define

δ
n+1,k
ie = T n+1,k

i − T n+1,k
e

φ
n+1,k
i − φ

n+1,k
e

, βn+1,k
α = φn+1,k

α − φn
α

En+1,k
α − En

α

for α = e, i . (14)

This numerical procedure is used at each time step tn until convergence of φr , φe and φi is
reached.

3.2 Practical Numerical Resolution

In order tomake the numerical resolutionmore explicit and to prepare the numerical analysis,
the scheme is rewritten under the form of convex combinations. Here, for clarity we drop
index n + 1 in the notations (but we keep it for φα).

We start by rewriting the third equation of (13) as the convex combination

φ
n+1,k+1
i = hkφn

i + (1 − hk)φn+1,k+1
e , (15)

where

hk = 1

1 + δkieβ
k
i cκΔt

∈ [0, 1]. (16)

Now, inserting Eq. (15) into the second equation of (13) one deduces

φn+1,k+1
e = f k(gkφn

e + (1 − gk)φn
i ) + (1 − f k)φn+1,k+1

r , (17)

where

f k = 1

1 + gkβk
e cσPΔt

∈ [0, 1], gk = 1

1 + hkδkieβ
k
e cκΔt

∈ [0, 1]. (18)

Finally, Eq. (17) is inserted into the first equation of (13) to obtain the following expressions

φn+1,k+1
r = j kφn

r + (1 − j k)(gkφn
e + (1 − gk)φn

i ),

with

j k = 1

1 + f kcσPΔt
∈ [0, 1]. (19)

Finally, the scheme writes under the following compact form
⎧
⎪⎨

⎪⎩

φ
n+1,k+1
r = j kφn

r + (1 − j k)(gkφn
e + (1 − gk)φn

i ),

φ
n+1,k+1
e = f k(gkφn

e + (1 − gk)φn
i ) + (1 − f k)φn+1,k+1

r ,

φ
n+1,k+1
i = hkφn

i + (1 − hk)φn+1,k+1
e ,

(20)

where f k , gk , hk and j k are defined by (16), (18) and (19). This form can be completely
explicited to make appear convex combinations as the following

φn+1,k+1
r = j kφn

r + gk(1 − j k)φn
e + (1 − gk)(1 − j k)φn

i ,
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φn+1,k+1
e = j k(1 − f k)φn

r + ( f kgk + (1 − f k)(1 − j k)gk)φn
e

+ ( f k(1 − gk) + (1 − f k)(1 − j k)(1 − gk))φn
i ,

φ
n+1,k+1
i = ((1 − hk)(1 − f k) j k)φn

r

+ ((1 − hk)( f kgk + (1 − f k)(1 − j k)gk))φn
e

+ (hk + (1 − hk)( f k(1 − gk) + (1 − f k)(1 − j k)(1 − gk)))φn
i .

One can check that the quantities φn+1,k+1
α write as convex combinations of φn

α . In the next
section, it is demonstrated that this key point enables the proof of strong stability properties.

3.3 Scheme Properties

In this section the different properties of the scheme are proved.

Property 3 At convergence, the numerical scheme (20) conserves the discrete total energy.

Proof Adding the three equations of (13) gives

φ
n+1,k+1
r − φn

r

Δt
+ 1

βk
e

φ
n+1,k+1
e − φn

e

Δt
+ 1

βk
i

φ
n+1,k+1
i − φn

i

Δt
= 0.

Now, considering the expression of βk
e and βk

i given in (14) gives

φ
n+1,k+1
r − φn

r

Δt
+ En+1,k

e − En
e

φ
n+1,k
e − φn

e

φ
n+1,k+1
e − φn

e

Δt
+ En+1,k

i − En
i

φ
n+1,k
i − φn

i

φ
n+1,k+1
i − φn

i

Δt
= 0 (21)

At convergence (k → ∞, φn+1,k+1
α → φn+1

α and En+1,k+1
α → En+1

α ) (a convergence result
under CFL condition is given in Property 7) Eq. (21) simplifies into

En+1
r − En

r + En+1
e − En

e + En+1
i − En

i = 0,

leading to the energy conservation property

En+1
r + En+1

e + En+1
i = En

r + En
e + En

i .

	

Remark Note that the choice of the discretisation of βα given in (14) is mandatory to obtain
this discrete energy conservation property.

Property 4 (Strong stability property)
Each sub-iteration k is unconditionally L∞ stable.

Proof The demonstration of this stability property lies in the writing of the scheme under
the form of convex combinations (20). We also point out that this is only possible thanks to
the reformulation of the model presented in the previous section. Now, supposing that the
quantities φn

α are bounded, we introduce

φn
min = min(φn

r , φn
e , φn

i ), φn
max = max(φn

r , φn
e , φn

i ).

Therefore, the first equation of (20) gives

j kφn
min + (1 − j k)gkφn

min + (1 − j k)(1 − gk)φn
min ≤ φn+1,k+1

r
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≤ j kφn
max + (1 − j k)gkφn

max + (1 − j k)(1 − gk)φn
max ,

which simplifies into

φn
min ≤φn+1,k+1

r ≤ φn
max .

The same procedure applies for the second and third equations of (20) giving the same result
for φ

n+1,k+1
e and φ

n+1,k+1
i . 	


Remark Taking into account of external source terms the numerical scheme proposed reads
as follow

⎧
⎪⎨

⎪⎩

φ
n+1,k+1
r = j kψn,k

r + (1 − j k)(gkψn,k
e + (1 − gk)ψn,k

i ),

φ
n+1,k+1
e = f k(gkψn,k

e + (1 − gk)ψn,k
i ) + (1 − f k)φn+1,k+1

r ,

φ
n+1,k+1
i = hkψn,k

i + (1 − hk)φn+1,k+1
e .

(22)

where

ψn,k
r = ψn

r = φn
r + QrΔt, ψn,k

e = φn
e + βk

e QeΔt, ψ
n,k
i = φn

i + βk
i QiΔt .

The quantities φn+1,k+1
α still write as convex combinations of ψn,k

α so that the stability
property is still verified.

Property 5 The numerical scheme (20) is asymptotic-preserving in the limit σP and κ tend
to infinity.

Proof Let τ be the characteristic time of evolution and ε the dimensionless quantity

ε = 1/max(cσPτ, cκτ),

to be eventually made vanishingly small. Scaling the set of Eq. (13) with τ and letting ε tend
to zero gives at first order in ε (by using a standard Hilbert expansion)

φ
k+1,0
i = φk+1,0

e = φk+1,0
r ,

which by definition of φα is equivalent to

T k+1,0
i = T k+1,0

e = T k+1,0
r ,

where index zero indicates the first order term in the Hilbert decomposition. Now, adding the
three equations of (13) considered at the next order in ε leads to

φ
k+1,0
r − φ

n,0
r

Δt
+ 1

βk
e

φ
k+1,0
e − φ

n,0
e

Δt
+ 1

βk
i

φ
k+1,0
i − φ

n,0
i

Δt
= 0,

which is correctly consistent with the equilibrium limit in the case of no source terms nor
flux terms

∂t (Ei (Teq) + Ee(Teq) + Er (Teq)) = 0,

where Teq is defined by
T 0
i = T 0

e = T 0
r = Teq .

	

Property 6 The numerical scheme (20) is steady-state-preserving.
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Proof The steady-state-preserving property is straightforward. Considering the set of Eq. (9)
at equilibrium directly gives

φe = φi = φr .

Injecting this condition in the numerical scheme (20), it is immediately observed that this
state is preserved over time. 	

Property 7 (Convergence of the scheme)
If Δt is small enough the sequence (φk)k∈N = (φr , φe, φi )

k defined by (20) converges to
φn+1 solution to (9).

Proof The model studied is a differential system of the form

Ẋ = A(X)X , X : RN → R
N

where A : RN → R
N×N is a smooth function (of class C1) and such that IN − Δt A(X) can

be inversed for all X ∈ R
N (indeed in our case IN −Δt A is aM-matrix). The backward-Euler

scheme studied writes under the form

Xn+1 − Xn

Δt
= A(Xn+1)Xn+1, Xn+1 = (IN − Δt A(Xn+1))−1Xn,

and the corresponding implicit iterative method is

Xn+1,k+1 = fn(X
n+1,k), fn(X) = (IN − Δt A(X))−1Xn, Xn+1,0 = Xn .

Since, the scheme writes as convex combinations, if Xn ∈ E where E is a convex bounded
subset of RN then

fn(E) ⊂ E .

Now, using the mean value theorem (since A is regular) there exists a positive real value
constant K such that

∀(X1, X2) ∈ E2, ||A(X1) − A(X2)|| ≤ K ||X1 − X2||.
In addition if

Δt max
X∈E ||A(X)|| < 1,

then

∀X ∈ E, (IN − Δt A(X))−1 = IN +
+∞∑

i=1

(Δt)i A(X)i .

Consequently,

∀(X1, X2) ∈ E2, || fn(X1)− fn(X2)|| ≤
+∞∑

i=1

(Δt)i K i ||X1−X2||i K ′ = Δt K ||X1 − X2||K ′
1 − Δt K ||X1 − X2|| ,

where K ′ = max
X∈E ||X || (the above series converges if 2Δt K ′K < 1). Therefore there exists

a positive real constant Kmax such that

∀(X1, X2) ∈ E2, || fn(X1) − fn(X2)|| ≤ Δt Kmax ||X1 − X2||.
Choosing Δt such that Δt Kmax < 1, the function fn is a contraction mapping and the
sequence (Xn+1,k)k∈N converges towards the unique fixed point of fn .
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Remark Even if the convergence result only holds under a strong CFL condition, in practice
it is observed that the scheme is always convergent even working with very large time step.

4 1D Slab

The numerical strategy proposed in the previous sections is now extended in order to take into
account a radiative flux under the Rosseland diffusion approximation. In the one dimensional
setting a very standard three point diffusion scheme is considered for the spatial discretisation.
Writing j ∈ {1, . . . , M} the index of the cell the discrete radiative flux writes

(∂x Fr ) j = Fj+1/2 − Fj−1/2

Δx
,

Fj+1/2 = −c(φr , j+1 − φr , j )

3σr , j+1/2Δx
,

σr , j+1/2 = σR
((
Te, j + Te, j+1

)
/2

)
.

The Euler-backward scheme becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 + cσ n+1
P Δt f n+1 + Δt

Δx2
(λn+1

r , j+1/2 + λn+1
r , j−1/2))φ

n+1
r , j − Δt

Δx2
(λn+1

r , j+1/2φ
n+1
r , j+1 + λn+1

r , j−1/2φ
n+1
r , j−1)

= φn
r , j + cσ n+1

P Δt f n+1(gn+1φn
e, j + (1 − gn+1)φn

i, j ),

φn+1
e, j = f n+1(gn+1φn

e, j + (1 − gn+1)φn
i, j ) + (1 − f n+1)φn+1

r , j ,

φn+1
i, j = hn+1φn

i, j + (1 − hn+1)φn+1
e, j ,

(23)
where f n+1

j , gn+1
j and hn+1

j are defined in (16) and (18). The first equation of (23) can be
written under the form of a linear system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dn+1
1 cn+1

1 · · · 0
cn+1
1 dn+1

2 cn+1
2

. . .
. . .

. . .
...

cn+1
j−1 dn+1

j cn+1
j

...
. . .

. . .
. . .

cn+1
M−2 dn+1

M−1 cn+1
M−1

0 · · · cn+1
M−1 dn+1

M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φn+1
r ,1

...

φn+1
r , j
...

φn+1
r ,M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bn+1
1

...

bn+1
j
...

bn+1
M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (24)

where

cn+1
j = − Δt

Δx2
λn+1
r , j+1/2, λnr , j+1/2 = c

3σ n
r , j+1/2

,

bn+1
j = φn

r , j + cσ n+1
P Δt f n+1(gn+1φn

e, j + (1 − gn+1)φn
i, j ),

dn+1
j = 1 + cσ n+1

P Δt f n+1 + Δt

Δx2
(λn+1

r , j+1/2 + λn+1
r , j−1/2).

We denote An+1 the matrix of the system and write An+1 = Dn+1 + En+1 + Fn+1 where
Dn+1 contains the diagonal of An+1, En+1 the lower triangular part and Fn+1 the upper
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triangular part. System (24) can be written

(Dn+1 + En+1 + Fn+1)Φn+1 = Bn+1, Φn+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φn+1
r ,1

...

φn+1
r , j
...

φn+1
r ,M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Bn+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bn+1
1

...

bn+1
j
...

bn+1
M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Remark Similarly to the quantities σP and κ , σR can be chosen implicit or explicit (see
“Appendix 1”).

4.1 Implicit Iterative Strategies

While the spatial discretisation is straightforward, in this part, different time discretisation
strategies are presented and compared.

4.1.1 Jacobi Procedure

The first temporal discretisation considered lies on a local iterative implicit procedure. Here,
only the diagonal terms are chosen implicit and the linear system (24) writes

Dn+1,kΦn+1,k+1 = Bn+1,k − (En+1,k + Fn+1,k)Φn+1,k .

The last equation of (23) becomes

⎧
⎨

⎩

φ
n+1,k+1
e, j = f kj (g

k
jφ

n
e, j + (1 − gkj )φ

n
i, j ) + (1 − f kj )φ

n+1,k+1
r , j ,

φ
n+1,k+1
i, j = hkjφ

n
i, j + (1 − hkj )φ

n+1,k+1
e, j .

(25)

In the following this numerical scheme is called the Jacobi method.

4.1.2 Gauss–Seidel Procedure

In this section the temporal discretisation of the radiative flux uses the quantities already
computed at time tn+1 to improve the convergence of the method. In addition, in order to
increase the convergence speed we choose, at each sub-iteration k, to switch between a direct
method and a retrograde method. More precisely the implicit scheme (24) is solved by

(Dn+1,k + En+1,k)Φn+1,k+1 = Bn+1,k − Fn+1,kΦn+1,k if k is even,

(Dn+1,k + Fn+1,k)Φn+1,k+1 = Bn+1,k − En+1,kΦn+1,k if k is odd.

The last equations of (23) still write as (25). This iterative method is called the Gauss–Seidel
method in the following.
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4.1.3 Conjugate Gradient Procedure

Here, all the terms in the discretisation of the radiative flux are considered implicit so the
resolution of an linear system at each sub-iteration k is required. This is done by a standard
conjugate gradient method. In this case, the iterative method of the implicit scheme reads

(Dn+1,k + En+1,k + Fn+1,k)Φn+1,k+1 = An+1,kΦn+1,k+1 = Bn+1,k,

and the other equations of the scheme writes as (25). In the following this numerical method
is called the conjugate gradient method.

4.1.4 Hybrid Methods

In the following section it will shown that the convergence of the Jacobi and the Gauss–
Seidel methods is slow compared to the one of the conjugate gradient method. However, it is
possible to combine these methods to obtain very fast and stable algorithms. More precisely,
the idea is to start by using the conjugate gradient method in the first iterations (let us call N
this iteration number) then use the Jacobi or the Gauss–Seidel method. These two methods
are called the hybrid Jacobi method and the hybrid Gauss–Seidel method. The influence of
the iteration number before switching to a method to another is discussed in the next section.

Remark Of course, it is possible to start a simulation using the Jacobi or the Gauss–Seidel
method then work with the conjugate gradient method.

4.2 Numerical Properties

The numerical properties established for the ODE system are now extended to the PDE
system.

Property 8 The Jacobi, Gauss–Seidel the conjugate gradient schemes conserve the discrete
total energy.

Proof With Property 3 (energy conservation in 0D), the energy conservation property for the
PDE model is straightforward. For the three strategies (Jacobi, Gauss–Seidel and conjugate
gradient) the radiative diffusion term is conservative at convergence. The scheme obtained is
conservative and correctly consistent with the energy conservation law (5). The total energy
in the domain is then conserved. 	

Property 9 The Jacobi, the Gauss–Seidel and conjugate gradient scheme are asymptotic-
preserving in the limit cσP and cκ tend to infinity.

Proof The proof is similar to the proof provided in the 0D case. Let τ be the characteristic
time of evolution and ε the dimensionless quantity

ε = 1/max(cσPτ, cκτ).

Scaling the three schemes with τ and letting ε tend to zero gives at the first order in ε (terms
similar to the 0D case)

φ
k+1,0
i = φk+1,0

e = φk+1,0
r ,

which by definition of φα is equivalent to

T k+1,0
i = T k+1,0

e = T k+1,0
r ,
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where index zero indicates the first order term in the Hilbert decomposition. Now, adding the
three equations of (14) considered at the next order in ε leads to (in the case of the Jacobi
scheme)

φ
k+1,0
r − φ

n,0
r

Δt
+ 1

βk
e

φ
k+1,0
e − φ

n,0
e

Δt
+ 1

βk
i

φ
k+1,0
i − φ

n,0
i

Δt

= λnr , j+1/2(φ
k,0
r , j+1 − φ

k+1,0
r , j ) − λnr , j−1/2(φ

k+1,0
r , j − φ

k,0
r , j−1)

Δx2
,

which is correctly consistent with the equilibrium limit (in the case of no source terms)

∂t (Ei (Teq) + Ee(Teq) + Er (Teq)) + ∇.Fr (Teq) = 0,

where Teq is defined by
T 0
i = T 0

e = T 0
r = Teq .

The procedure is the same for the Gauss–Seidel and conjugate-gradient schemes. 	

Property 10 The Jacobi and Gauss–Seidel scheme are unconditionally L∞ stable. The
conjugate-gradient scheme is unconditionally positive.

Proof The L∞ stability property of the Jacobi andGauss–Seidel scheme is simply established
bywriting themunder the formof convex combinations.Unfortunately, the conjugate gradient
method does not write under this formalism. However, the associated matrix given in (24)
is a M-matrix and the components of vector b are positive (convex combination of positive
terms), therefore the solution remains positive. 	

Drawbacks of standard higher-order time extensions
It is possible and easy to construct second-order (or high-order) implicit schemes based
on standard implicit Runge–Kutta strategies. However, while it is possible to use explicit
Runge–Kutta schemes based on convex-combinations to ensure the L∞ stability property,
it is not the case with implicit Runge–Kutta. Therefore, one understands the difficulty in
getting high-order schemes while enforcing the L∞ property and dealing with the stiffness.
To illustrate this we consider the very simple toy ordinary differential equation

y′(t) = −y(t)/ε,

where ε is a small parameter. The backward-Euler scheme reads

yn+1 = ε

ε + Δt
yn,

which is obviously unconditionally stable and asymptotic-preserving (for a fixed Δt , in the
limit ε tends to zero, the limit scheme is yn+1 = 0 which is consistent with the limit model
y(t) = 0). Now consider a standard implicit second-order Runge–Kutta scheme associated
to the following Butcher tableau

0 0

1 1
2

1
2

1
2

1
2

leads in this simple linear case to

yn+1 = 2ε − Δt

2ε + Δt
yn . (26)
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Even if this scheme is A-stable the positivity of the solution is only ensured if the time time
step Δt remains smaller than 2ε which of course is prohibitive. The same issue arises with
the three temperature model studied here. In this case, the second order implicit Runge–Kutta
scheme reads

φn+1 = φn + Δt

2
A(φn)φn + Δt

2
A(φn+1)φn+1,

with

φn + Δt

2
A(φn)φn =

⎛

⎝
φn
r + 1

2cΔtσP (φn
e − φn

r )

φn
e + 1

2cΔtσPβn
e (φn

r − φn
e ) + cΔt 12κ

nβn
e δnie(φ

n
i − φn

e )

φn
i + 1

2cΔtκnβn
i δnie(φ

n
e − φn

i )

⎞

⎠ . (27)

While it is possible to show that the matrix [I3 − Δt
2 A(φn+1)]−1 is a stochastic matrix,

unfortunately the coefficients of φn + Δt
2 A(φn)φn may be negative. This phenomena may

for example occur when the electronic temperature is much larger than the ionic and radiative
temperatures (see problem 3 in the numerical results section). Indeed, in this case, the second
component of Eq. (27) is negative (if σP and κ are large enough).

One may think, in the spirit of MOOD strategies, in using standard high order implicit
Runge–Kutta schemes and detect at posteriori if the L∞ property is satisfied. If it is not the
case, the solution is recomputed (only in the stencil) with a lower order Runge–Kutta scheme.
This process is repeated until the first order implicit scheme (which is L∞ stable) is reached
if necessary. However, for the kind of applications we are interested in, the strong stiffness
of the problem directly leads us to use the first order scheme.

In addition, even if a high-order implicit L∞ stable scheme was available, the asymptotic-
preserving property is mandatory here. In particular the second-order implicit Runge–Kutta
scheme (26) does not keep the asymptotic-preserving property even for the simple toymodel.

Finally, the extension to higher-order schemes while keeping both the asymptotic-
preserving property and the L∞ stability property seems particularly challenging even in
the 0D case. It is maybe possible to derive high-order schemes by releasing one of these
properties (for example retaining only the positivity instead of the L∞ stability) but even this
is not straightforward and should be investigated in details. For these reasons and the kind of
applications we are interested in, we believe the implicit first order scheme presented in this
communication should be preferred instead of standard high-order implicit schemes (which
are not L∞ stable nor asymptotic-preserving for large Δt).

5 Electronic and Ionic Conductivities

The contribution of the electronic and the ionic conductivities are now included. It is shown
that the reformulation procedure and the numerical strategy of the previous sections can be
naturally extended.

5.1 Model and Numerical Strategy

Spitzer–Härm formulae [14] are considered for electronic and ionic conductivities so that in
the one dimensional framework the system studied reads
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⎧
⎪⎨

⎪⎩

∂t Er + ∂x (λr∂x Er ) = cσP (aTe4 − Er ),

∂t Ee + ∂x (λ
′
e∂x Ee) = cσP (Er − aTe4) + cκ(Ti − Te),

∂t Ei + ∂x (λ
′
i∂x Ei ) = cκ(Te − Ti ),

(28)

where the radiative, electronic and ionic conductivities are defined in (3). Now, following the
same procedure as in the first section, model (28) is rewritten as

⎧
⎪⎨

⎪⎩

∂tφr + ∂x (λr∂xφr ) = cσP (φe − φr ),

∂tφe + βe∂x (λe∂xφe) = βecσP (φr − φe) + βecκδie(φi − φe),

∂tφi + βi∂x (λi∂xφi ) = βi cκδie(φe − φi ),

(29)

where

λe = 1

βe
λ

′
e, λi = 1

βi
λ

′
i .

The model is now well-suited to apply the numerical strategy presented in the previous
sections.

5.2 Numerical Properties

The numerical properties established in the previous sections naturally extend to the full
model (28).

Property 11 The Jacobi, Gauss–Seidel and conjugate gradient schemes apply to the set of
Eq. (29) conserve the discrete total energy.

Proof Using Property 3 (energy conservation in 0D), the energy conservation property is
straightforward. For the three strategies (Jacobi, Gauss–Seidel and conjugate gradient) the
radiative diffusion, the electronic and ionic conductivities terms are conservative at conver-
gence. Adding the three equations the resulting scheme obtained is conservative and correctly
consistent with the energy conservation law (5). 	

Property 12 The Jacobi, the Gauss–Seidel and conjugate gradient scheme are asymptotic-
preserving in the limit σP and cκ tend to infinity.

Proof The proof is similar to the proof provided in the previous section. By considering the
scaling and the Hilbert expansion procedure give by adding the three equations (in the case
of the Jacobi scheme)

φ
k+1,0
r , j − φ

n,0
r , j

Δt
+ 1

βk
e

φ
k+1,0
e, j − φ

n,0
e, j

Δt
+ 1

βk
i

φ
k+1,0
i, j − φ

n,0
i, j

Δt

= λkr , j+1/2(φ
k,0
r , j+1 − φ

k+1,0
r , j ) − λkr , j−1/2(φ

k+1,0
r , j − φ

k,0
r , j−1)

Δx2

+ λ
k,0
e, j+1/2(φ

k,0
e, j+1 − φ

k+1,0
e, j ) − λ

k,0
e, j−1/2(φ

k+1,0
e, j − φ

k,0
e, j−1)

Δx2

+ λ
k,0
i, j+1/2(φ

k,0
i, j+1 − φ

k+1,0
i, j ) − λ

k,0
i, j−1/2(φ

k+1,0
i, j − φ

k,0
i, j−1)

Δx2
.

which is correctly consistent with the equilibrium limit (in the case of no source terms)

∂t (Ei (Teq) + Ee(Teq) + Er (Teq)) + ∇.(Fr (Teq) + Fe(Teq) + Fi (Teq)) = 0,
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where Teq is defined by
T 0
i = T 0

e = T 0
r = Teq .

The procedure is the same for the Gauss–Seidel and conjugate-gradient schemes. 	

Property 13 The Jacobi and Gauss–Seidel scheme are unconditionally L∞ stable. The
conjugate-gradient scheme is unconditionally positive.

Proof The L∞ stability property of the Jacobi and Gauss–Seidel scheme is shown by writing
themunder the formof convex combinations. In the case of the Jacobimethod the procedure is
the following. Firstly using the ionic energy equation φk+1

i, j is written as convex combinations

of φn
i, j , φ

k+1
e, j , φk

i, j+1 and φk
i, j−1. Then, using the electronic energy equation and the relation

just obtained φk+1
e, j is written as convex combinations of φn

e, j , φk+1
r , j , φk

i, j+1, φk
i, j−1, φk

e, j+1

and φk
e, j−1. Finally, this last relation is combined with the radiation energy equation to write

φk+1
r , j as convex combinations of φn

r , j , φk+1
r , j+1, φk+1

r , j−1, φk
i, j+1, φk

i, j−1, φk
e, j+1 and φk

e, j−1.
The procedure is the same for the Gauss–Seidel scheme. Unfortunately similarly to the
previous section the conjugate gradient method does not write under this formalism (no
convex combinations). However, the matrix associated to the resulting linear system is a M-
matrix and the components of the right-hand side vector are positive, therefore the solution
remains positive. 	


6 Numerical Test Cases

6.1 Numerical Results in 0D Settings (No Spatial Variation)

The two first test cases we consider are taken from [3]. At initial time the three temperatures
are set equal. External source terms are applied and the separation of the temperature profiles
is studied.

Problem 1 and 2. The values of the physical parameters and the initial quantities are
given in Table 1. The external source term appears on the ions equation and writes

∫ t2

t1
Qi (t)dt = A

2

(

erf

(
t2 − tc√

2tw

)

− erf

(
t1 − tc√

2tw

))

, (30)

where
A = 75.19884, tc = 10, tw = 1,

and erf is the standard error function. In order to explain how to use expression (30) we
consider a simplified form of the last equation of (9) (it works the same for the general model
and the scheme presented here)

∂tφi = βi Qi .

Integrating in time between [tn, tn+1] this equation gives

φi (t
n+1) − φi (t

n) =
∫ tn+1

tn
βi (t)Qi (t)dt ≈ βi (t

n+1)

∫ tn+1

tn
Qi (t)dt .

Now the last integral in the previous equation is exactly given by expression (26) therefore
the scheme writes

φn+1
i − φn

i = βn+1
i

∫ tn+1

tn
Qi (t)dt = βn+1

i
A

2

(

erf

(
tn+1 − tc√

2tw

)

− erf

(
tn − tc√

2tw

))

.
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Table 1 Parameters and initial
quantities used for Problem 1 and
2

Problem 1 Problem 2

c 29.979 29.979

a 0.01372 0.01372

σp 0.5 × T−2
e 0.1 × T−2

e

κ 0.1 0.01379 × (Te)−1/2

ρCv,i 0.15 0.15

ρCv,e 0.3 0.3 × Te

Ti = Te = Tr 2.52487 × 10−5 2.52487 × 10−5

A 75.19884 15.03978
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Fig. 1 Problem 1. Time evolution of the three temperature profiles using a large time step (left) and a smaller
time step (right)

Figures 1 and 2 display the time evolution of temperatures obtained with the scheme (22)
for Problem 1 and Problem 2. For small time steps (Figs. 1b and 2b) one recovers the results
found in [3]. In addition, it is observed that even using very large time steps (Figures 1a
and 2a ) the scheme (22) produces sensible numerical solutions. In the two numerical test
cases considered in [3], the quantity φn

i remains larger than φn
e . We propose here, a slight

modification of Problems 1 and Problem 2 to check configurations where it is not the case.
Problem 3. This test case reconsiders the data of the Problem 1 but the three temperatures

are not initially equal (see Table 2).
Problem 4. This test case use the data of Problem 2 but the ionic energy source (30) is

replaced by a radiative energy source of the same value
∫ t2

t1
Qr (t)dt = A

2

(

erf

(
t2 − tc√

2tw

)

− erf

(
t1 − tc√

2tw

))

.

In Figs. 3 and 4 it is shown that the scheme (22) give reasonable results for the Problem
3 and Problem 4 even working with very large time step (see Figs. 9a and 4a). We mention
here that these configurations are problematic for the scheme proposed in [3] in which
negative temperatures can be obtained. In our case, thanks to the strong stability property
(unconditionally L∞ stability) this can not occur even for very large time steps.
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Fig. 2 Problem 2. Time evolution of the three temperature profiles using a large time step (left) and a smaller
time step (right) obtained with nonlinear ρCv,e and κ

Table 2 Parameters and initial
quantities used for Problem 3 and
4

Problem 3 Problem 4

c 29.979 29.979

a 0.01372 0.01372

σp 0.5 × T−2
e 0.1 × T−2

e

κ 0.1 0.01379 × (Te)−1/2

ρCv,i 0.15 0.15

ρCv,e 0.3 0.3 × Te

Ti 2.52487 × 10−1 2.52487 × 10−5

Te 2.52487 × 101 2.52487 × 10−5

Tr 2.52487 × 10−1 2.52487 × 10−5

A 75.19884 15.03978
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Fig. 3 Problem 3. Time evolution of the three temperature profiles using a large time step (left) and a smaller
time step (right)
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Fig. 4 Problem 4. Time evolution of the three temperature profiles using a large time step (left) and a smaller
time step (right)

Fig. 5 L2 error for different time
step Δt . The slope of the straight
line in blue is 1

Numerical convergence in 0D
We check the accuracy on the scheme in this 0D setting by comparing the results with

reference solutions [2,3]. In Fig. 5 the error between the numerical solution and a reference
solution is displayed for different time steps for Problem 1. Similar results are obtained for
Problems 2, 3 and 4. It is observed that the scheme is correctly convergent. More precisely,
the slope of the strait line in blue is 1, therefore it is observed that the coonvergence in time
of the scheme is correctly of order one. For this test case, the accuraccy seems more than
one but since the temporal discretisation is first order accurate [see discussion in Sect. (4.2)]
we believe this extra-convergence is not relevant. In the 1D case it is observed the scheme is
first order.

6.2 Numerical Results in the 1D Slab

6.2.1 Asymptotic Behavior

The asymptotic-preserving property of the scheme is now investigated. In the limit cσ and
cκ tend to infinity, it is expected the three temperatures to be equal and exhibit a diffusion
equation behavior. For this purpose we study the relaxation of an initial energy profile for
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Fig. 6 Energy profiles obtained for different values of cσ = cκ . The results are displayed for cσ = cκ = 10−1

(top left), cσ = cκ = 100 (top right), cσ = cκ = 101 (bottom left) and cσ = cκ = 102 (bottom right). In
the limit cσ and cκ tend to infinity the diffusion limit is correctly recovered

different values of cσ and cκ of the form

φe = φi = φr = 1 + exp(−0.5(x − 5)2)/
√
2π,

where the space domain is [0, 10] and we have set Δx = 0.1, Δt = 10−3, ρCv,α = 4aT 3
α ,

a = c = σR = 1 and cσP = cκ . The final time is t = 10. In Fig. 6, the three energy
profiles obtained for different values of cσP = cκ are displayed. The results are shown for
cσP = cκ = 10−1 (top left), cσP = κ = 100 (top right), cσP = cκ = 101 (bottom left)
and cσP = cκ = 102 (bottom right). In addition the solutions of a direct discretisation of
the limit diffusion equation is displayed in dashed green. It is observed that for small values
of cσP = cκ , the three temperature profiles are very different while they become closer as
cσP = cκ increases. As expected, for large values cσP = cκ (for example larger than 102),
the electronic, ionic and radiative energy profiles correctly match with the diffusion solution.
The correct asymptotic behavior is then recovered.

Numerical convergence in 1D
We now check the accuracy of the scheme in 1D for this test case. In Fig. 7 the L∞ error

between the numerical solution and a converged solution (obtained with a very refined mesh)
is displayed for different space steps. It is observed that the scheme is correctly convergent.
More precisely, the slope of the strait line in blue is 2, therefore the scheme is correctly
second order accurate in space (standard discretisation of a diffusion operator). A similar
convergence analysis in time shows that the scheme is first order accurate in time.
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Fig. 7 L∞ error for different
space step Δx . The slope of the
straight line in blue is 2. The
scheme is correctly second order
accurate in space (Color figure
online)
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Fig. 8 Test case Marshak2A.
Temperature profile using 1000
cells and a time step of
Δt = 1 × 10−3 sh at different
times
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6.2.2 Marshak2A Test Case

The numerical test case we consider consists in the propagation of a Marshak wave and is
taken from [15]. In the followingwe refer to it as theMarshak2A test case. The space interval is
[0, 0.5] and the physical constant are c = 299.79 and a = 0.01372. The coefficient κ is taken
sufficiently large to ensure Te = Ti = Tm . We consider ρCv,e = 0.03 and ρCv,i = 0.27.
The absorption opacity and the Rosseland opacity follow the relation σP = σR = 300T−3

m .
At initial time, all the temperatures are set equal with Tr = Tm = 1 × 10−6. Concerning
the boundary condition, a temperature of Te = Ti = Tr = 1 at the left boundary while a
Neumann outgoing flux condition is considered in x = 0.5. The temperature profile obtained
is displayed on Fig. 8 for different times.

In practice it is observed that all the numerical schemes (Jacobi, Gauss–Seidel, conjugate
gradient and hybrid) recover the same correct temperature profiles. At convergence, the others
numerical scheme presented in the previous sections give the same results. However, it is
observed that the computational time required by the different schemes is greatly different.

Importance of the energy conservation
In this section the conservative scheme presented in this communication is compared with
the same scheme for which another definition of the parameter βα is considered. For this
news scheme, instead of choosing the definition (11), we consider βα = (4aT 3

α )/(ρCv,α)

(see Eq. 7). By definition of βα this scheme is correctly consistent but is not exactly conser-
vative. The two schemes are compared with a reference solution in Fig. 9. As expected, it is
observed that for a given mesh the conservative scheme presented is the most accurate. This
demonstrates the importance of the energy conservation property.
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scheme in blue and the non-conservative scheme is
green. The reference solution is in red.

(a) Temporal profiles displayed for the conservative (b) Temporal evolution of the total energy in the
domain. The reference is in red, the conservative scheme

in blue and the non-conservative scheme is green.

Fig. 9 Influence of the energy conservation

Fig. 10 Computational time in
term of the cell number for
Δt = 1 × 10−3
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Computational times
The computational time of the different methods is computed in terms of the mesh number
keeping the same time step Δt = 1 × 10−3. Since the computational time of the hybrid
method depends on the parameter N (number of iterations before switching from onemethod
to another) we choose the optimal number N. Figure 10 shows that the convergence of the
Jacobi method is slow compared to the other numerical methods. The Gauss–Seidel method
is much faster but remains slow compared to the conjugate gradient method. Indeed, even
if a linear system is solved at each sub-step k it is observed that the converge is very fast.
Finally, it is shown that by using the optimal number of iteration N that hybrid methods can
become faster than the conjugate gradient method.

Hybrid methods
Asmentioned in the previous section, the convergence speeds of the hybrid methods strongly
depend on the iteration number N (number of iteration of a first method before working with
a second). Unfortunately, it is observed that the optimal iteration number N depends on the
test case considered but also on the time step and space step used. In Fig. 11 the computational
time is displayed as function of N for different meshes keepingΔt = 1×10−3. It is observed
that hybrid methods are often faster than the gradient conjugate method. However, it does
not seem easy to have access to the optimal iteration number before running a simulation.
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Fig. 11 Computational time as function of N (number of sub-iterations using the gradient conjugate method
before switching to the Gauss–Seidel method) for different meshes

Fig. 12 Modified Marshak2A test
case. Temperature profiles using
500 cells for different times
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That is why, this parameter can be left to the user. We mention here that by default the user
may consider the gradient conjugate method which is already very fast.

6.2.3 Modified Marshak2A

First modifications
For this test case, the numerical test case Marshak2A of the previous section is modified
such as the radiative temperature Tr and the matter temperature Tm do not remain equal.
The Rosseland opacity remains σR = 300T−3

m but the absorption opacity is changed to
σP = σR/100 = 3T−3

m . The parameter κ is kept sufficiently large to enforce Te = Ti = Tm .
The numerical results obtained are displayed in Fig. 12. As expected, one observes slight
differences between the two temperatures profiles Te = Ti = Tm and Tr .

Second modifications
In order to observe the decoupling of the electronic and ionic temperatures Te and Ti , sev-
eral values of the parameter κ are considered. In Fig. 13 different temperature profiles are
displayed for various values of κ .
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(b) κ = 10−2
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(c) κ = 10−3
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(d) κ = 10−4

Fig. 13 Modified Marshak2A test case. Representation of the temperature profiles for different values of κ at
different times

6.2.4 Electronic and Ionic Conductivities

The Marshak2A test case is reconsidered taking into account the electronic and ionic con-
ductivities (Spitzer formalism). We set λ

′
e = K , λ

′
i = K/100 and study the temperature

profiles for different values of the parameter K . The results are displayed in Fig. 14. As
expected, in the case K = 0, the results of the Marshak2A test case are recovered. Then, as
the parameter K increases (so the electronic and ionic conductivities), one notices that the
temperature profiles spread out more rapidly.

Conclusion

Robust and accurate numerical schemes have been proposed and analyzed for solving a
three temperature plasma model. Thanks to an appropriate recast of the model, convex
combination-based numerical schemes with strong stability properties can be derived. Dis-
crete energy conservation and asymptotic-preserving properties are also proved and the
numerical results are found to be close to the ones obtained in [3].
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Fig. 14 Marshak2A test case
with electronic and ionic
conductivities for three different
values of K at time t = 0.74
(right) and time t = 7.4 (left)
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The method has then been extended to include radiative fluxes. Different implicit iterative
time discretisations have been proposed and compared. It has been observed that the conjugate
gradientmethod ismuch faster than the Jacobi and theGauss–Seidelmethods.Wealso noticed
that hybrid methods may enable even faster simulations. Finally, the numerical strategy has
been extended to include the contributions of the electronic and ionic conductivities.

A natural perspective dealswith the extension to several space dimensions on cartesian and
non-structured meshes. We believe the methodology proposed here can be extended easily to
these cases. Also, numerical comparisons between standard Newton-Raphson strategies and
the one presented here may be investigated. Finally, this methodology will be extended to
more accurate models by considering a multi-group description for the radiation transport.

Appendix A: Stability of the State Ti = Te = Tr .

Property 14 All states such that Ti = Te = Tr are equilibrium states (in the 0D case (no
spatial variation) case with no source term).

Proof We only consider here the simplified the 0D case (no spatial variation) (no spatial
dependence) with no source terms. Setting

X =
⎛

⎝
Er

Ee

Ei

⎞

⎠ , F(X) =
⎛

⎝
cσP (φe − φr )

cσP (φr − φe) + κ(Ti − Te)
κ(Te − Ti )

⎞

⎠ ,

the model (1) writes under the following ordinary differential set of equations

Ẋ = F(X).

The unique fix point X0 such that F(X0) = 0 corresponds to the case of equal temperatures
Tr = Te = Ti . Now, considering the case of a small perturbation δX around the equilibrium
state X0, one obtains

˙(X0 + δX) = ˙δX = F(X0 + δX) � F(X0) + ∂X F |X0δX = ∂X F |X0δX .

In this linear case, the following analytical expression of δX is obtained

δX(t) = e∂X F |X0 tδX(0).

The study of the eigenvalues of the matrix s ∂X F |X0 shows that the matrix displays two
negative eigenvalues and a third one which is zero. Therefore, X0 is a stable equilibrium. 	
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Fig. 15 Representation of βk
α a function of Ck using a constant reconstruction
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Fig. 16 Representation of βk
α a function of Ck using a linear reconstruction

Appendix B: Practical Computation of the Terms ˇk
˛ and ık

ie

The evaluations of the expressions (14) may be sensitive if the denominators become close
to zero. However this difficulty is only numerical. Indeed, performing a Taylor expansion on
βk

α in T k
α = T n

α gives

lim
|T k

α −T n
α |→0

βk
α = 4a(T n

α )3

ρCv,α

. (31)

Similarly, a Taylor expansion on δkie in φk
i = φk

e leads to

lim
|T k

i −T k
e |→0

δkie = 1

4a(T k
e )3

. (32)

Coming back to the computation of βk
α . The solution we consider consist in comparing the

quantityCk = |T k
α −T n

α |/(T k
α +T n

α )with a threshold value ε. IfCk is found larger than ε then
(14) is used otherwise one takes the expressions (31). In Fig. 15a, the value of βk

α is displayed
as function of the value of Ck for a large value of ε (left) and a small value of ε (right). Even
for small ε one observes a discontinuity between the limit value and the definition of βk

α . In
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order to avoid this, one considers a linear reconstruction instead of a constant state. The limit
value and the value in ε are simply connected using a linear approximation. In Fig. 16a, it is
observed that the discontinuity vanishes even using large value of ε.

The same procedure is applied for coefficient δkie.

Remark In practice, it has been observed that using this linear reconstruction procedure, the
choice of the value of ε does not have any impacts on the numerical results.

Appendix C: Temporal Discretisation of �P , � and �R

In the case of an explicit discretisation, they are fixed at time tn during the iterative process.
In the implicit case, the quantity are computed at iteration k + 1 while these coefficients are
taken at step k. A third discretisation is studied, taking the half sum between the quantity at
iteration k and time tn . It is observed that taking small time steps all the discretisation give
the same correct results. However, when using very large time step some differences appear.
For example in Fig. 17, reconsidering the test case Marshak2A with large time step (only
100 time step and a coarse grid of 100 cells), it is observed that the explicit method is by
far the less accurate while the implicit give the best accuracy. However, when looking at the
computational time in Table 3, it is observed that the explicit method is the fastest while the
implicit is the slowest.

Remark The results displayed inFig. 17 are obtainedusing the conjugate gradientmethod.We
mention that the results are very similar when using the Jacobi and Gauss–Seidel numerical
schemes.

Fig. 17 Temperature
comparisons between different
time discretisations of σP , κ and
σR for the test case Marshak2A
using the gradient conjugate
method
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Table 3 Computational time (in
second) for different time
discretisations

Explicit Implicit Half sum

Jacobi 22.4 24.9 36.7

Conjugate gradient 2.7 5.2 6.1

Hybrid-Jacobi 2.6 4.7 5.4
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