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Abstract. In this work, an asymptotic-preserving scheme is proposed for the electronic M1

model in the diffusion limit. A very simple modification of the HLL numerical viscosity is considered
in order to capture the correct asymptotic limit in the diffusion limit. This alteration also ensures the
realisability of the numerical solution under a suitable CFL condition. Interestingly, it is proved that
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1. Introduction and governing equations. General introduction. Spitzer
and Härm were the first to propose an electron transport theory in a fully ionised
plasma without magnetic field [46]. They derived the electron plasma transport coef-
ficients by solving the electron kinetic equation and using the expansion of the electron
mean free path over the temperature scale length (denoted ε in this paper). For that,
they assumed that the isotropic part of the electron distribution function remains close
to the Maxwellian. In the case of non-local regimes [44], the Spitzer-Härm theory is
not valid anymore. Considering for instance the case of inertial confinement fusion,
the plasma particles may have an energy distribution which is far from the thermo-
dynamic equilibrium so that the fluid description is not adapted. At the same time,
a kinetic description is accurate to describe such processes but is also very expensive
from the computational point of view and for most of real physical applications. Ki-
netic codes are indeed often limited to time and length scales much shorter than those
studied with fluid simulations. Therefore, it is essential to be able to describe kinetic
effects using reduced kinetic codes and operating on fluid time scales.

Entropic angular moments models can be seen as a compromise between kinetic
and fluid models. On the one hand, they are less expensive than kinetic models since
the number of variables is less. On the other hand, they provide more accurate results
than fluid models. The main point in moments models is the definition of the closure
relation which aims at giving the highest-order moment as a function of the lower-
order ones. This closure relation corresponds to an approximation of the underlying
distribution function. In [39, 42, 43, 47, 1], closures based on entropy minimisation
principles are investigated. It has been shown that such a choice enables to recover
fundamental properties such as the positivity of the underlying distribution function,
the hyperbolicity of the model and an entropy dissipation property [27, 41, 39].

As we will see, the moments model under consideration here is based on an angular
moments extraction. The kinetic equation is integrated with respect to the velocity
direction only, while the velocity modulus is kept as a variable. The closure is based
on an entropy minimisation principle and gives the angular M1 model. This model is
used in numerous applications such as radiative transfer [6, 48] or electron transport
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[40, 21, 30]. It satisfies fundamental properties and allows to recover an asymptotic
diffusion equation in long time and small mean free path regimes [22], as will be seen
hereafter.

In order to perform numerical simulations, the HLL scheme [33] is often used
for the M1 electronic model since it ensures the positivity of the first angular mo-
ment and the flux limitation property. However, this scheme does not degenerate
correctly in the diffusive limit and necessitates extremely fine meshes to provide rea-
sonable numerical approximations in this regime. In order to overcome this issue, the
so-called asymptotic-preserving (AP) schemes in the sense of Jin-Levermore [35, 34]
have been proposed over the last years to handle multi-scale situations, see for in-
stance [11, 3, 23, 38, 9, 20, 36, 17, 16, 15] and the references therein. In particular,
one of the most productive approach originated from Gosse-Toscani [26] is based on
suitable modifications of approximate Riemann solvers in Godunov-type methods, see
for instance [13, 12, 6, 14, 7].

Governing equations and numerical schemes. In the present work, we consider the
M1 model for the electronic transport [21, 32]. Ions are supposed to be fixed and
electron-electron collisions are not considered. The angular moment model reads

(1.1)


∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2αei(x)f1(t, x, ζ)

ζ3
,

where f0, f1 and f2 are the first three angular moments of the electron distribution
function f = f(t, x, µ, ζ), where t and x are the time and space variables, and µ and
ζ represent the angle and the modulus of the velocity. In (1.1), the αei > 0 positive
function of x and E = E(x) is the electrostatic field. We recall that the electron
distribution function f satisfies a kinetic equation [19] and the term f2 considered
here is an approximation of the third angular moments determined by the closure
relation. Omitting the x and t dependency for the sake of clarity, they are given by

(1.2)

f0(ζ) = ζ2

∫ 1

−1

f(µ, ζ)dµ, f1(ζ) = ζ2

∫ 1

−1

f(µ, ζ)µdµ,

f2(ζ) ≈ ζ2

∫ −1

−1

f(µ, ζ)µ2dµ.

In order to close this model, one has to define f2 as a function of f0 and f1. Here, we
consider that the closure relation originates from an entropy minimisation principle
[39, 42] and that f2 can be computed as a function of f0 and f1 as follows,

(1.3) f2(t, x, ζ) = χ
(f1(t, x, ζ)

f0(t, x, ζ)

)
f0(t, x, ζ), with χ(γ) = (1 + γ2 + γ4)/3,

see [28]. The set of realisable states is defined by

(1.4) A =
(

(f0, f1) ∈ R2, f0 ≥ 0, |f1| ≤ f0

)
,

which gives the existence of a non-negative distribution function from the angular
moments under consideration, see [45].
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In [29, 31] a numerical scheme based on an approximate Riemann solver was pro-
posed for the electronic M1 model. Non-standard intermediate states were introduced
in order to capture the anisotropic diffusion arising in the diffusion limit. Indeed, stan-
dard asymptotic-preserving corrections do not give an anisotropic numerical viscosity.
The realisability of the numerical solution was also proved. The strategy proposed
here is different since it follows the same approach as the one developed in [17] for
the Euler equations with some stiff source terms. It is not based on approximate
Riemann solvers but on a simple modification of the numerical flux associated with
the usual HLL scheme. More precisely, the asymptotic behaviour of the usual HLL
scheme is studied in the diffusive regime and the numerical viscosity is modified in
order to capture the correct asymptotic limit. This modification, which is much more
natural than the techniques developed in [29, 31], is proposed in such a way that the
realisability of the numerical solution of the scheme holds true under suitable CFL
conditions. Moreover, we will prove that the new scheme can be understood in the
framework of approximate Riemann solvers. We also mention from now on that unlike
[29, 31], the approach followed here allows to naturally recover the mixed derivatives
arising in the diffusive limit and seems adapted for higher order extensions. This
point is discussed in the last part of the paper and is further studied in [18].

Outline. The outline of the paper is as follows. We start by introducing the dif-
fusive limit of the M1 model in Section 2. In Section 3, we neglect the electric field by
setting E = 0 and we study the HLL scheme is in the diffusive regime. Then, a very
simple modification of the numerical viscosity is proposed and keeps the realisability
of the numerical solution. In Section 4, it is shown that the modified scheme can be
understood as a Godunov-type scheme associated with a suitable approximate Rie-
mann solver. In Section 5, the strategy is extended to the general model (1.1) with
electric field. In Section 6, numerical examples are presented in different collisional
regimes. Finally, conclusions and perspectives are given.

2. Diffusion limit. In this section, the diffusive limit of the electronic M1 model
(1.1) is introduced. For that, we consider a diffusive scaling and use a formal Hilbert
expansion. More precisely, let us introduce the following diffusion scaling

t̃ = t/t∗, x̃ = x/x∗, ζ̃ = ζ/vth, Ẽ = Ex∗/v2
th

with the characteristic quantities t∗ and x∗ are chosen such that τei/t
∗ = ε2, λei/x

∗ =
ε, where τei is the electron-ion collisional period , λei the electron-ion mean free path
and vth the thermal velocity defined by vth = λei/τei. The positive parameter ε goes
to zero in the diffusion limit. Rewriting (1.1) in dimensionless variables and removing
the tildes from the new variables, the equations take the form

(2.1)


ε∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

ε∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2σ(x)

ζ3

f1(t, x, ζ)

ε
,

where the coefficient σ is a non-negative function of x defined by

σ(x) =
τeiαei(x)

v3
th

.
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Introducing the following Hilbert expansion of f0 and f1

(2.2)

{
f0 = f0

0 + εf1
0 +O(ε2),

f1 = f0
1 + εf1

1 +O(ε2),

the second equation of (2.1) taken at order ε−1 leads to

(2.3) f0
1 = 0.

Using the definition (1.3) of f2, it follows that

(2.4) f0
2 = f0

0 /3.

Inserting again the Hilbert expansion (2.2) into the second equation of (2.1) gives now
at order ε0

(2.5) f1
1 = − ζ

4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f0

0 .

Finally, using the previous equation into the first equation of (2.1) at order ε1, the
following limit equation is obtained

∂tf
0
0 + ζ∂x

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f0

0

)
(2.6)

+ E∂ζ

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f0

0

)
= 0.

In the case E = 0 with no electric field, a classical diffusion equation with diffusion
coefficient −ζ5/6σ is recovered. In the general case, this limit equation involves mixed
x and ζ derivatives leading to a non isotropic diffusion. Note also that the source
term E(f0 − f2)/ζ brings its own contribution to the diffusive limit by adding the
term (Eζ2/(3σ))f0

0 in the right side of (2.5) and finally in the x and ζ derivatives of
(2.6).

3. Derivation of an asymptotic-preserving scheme in the case with no
electric field. In the case with no electric field, the electronic M1 model reads

(3.1)


∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) = −2αei(x)

ζ3
f1(t, x, ζ)

and the limit equation (2.6) writes

(3.2) ∂tf
0
0 (t, x)− ζ∂x

( ζ4

6σ(x)
∂xf

0
0 (t, x)

)
= 0.

In this section, we present a numerical scheme which preserves the asymptotic be-
haviour (3.2).

We denote by ∆x and ∆t the space and time steps, respectively. We define the
mesh interfaces xi+1/2 = i∆x for i ∈ Z and the intermediate times tn = n∆t for
n ∈ N. We also define the mid-points xi = (xi−1/2 + xi+1/2)/2 for i ∈ Z. At each
time tn, fn0i and fn1i represent an approximation of the exact solutions f0 and f1 on
the interval [xi−1/2, xi+1/2), i ∈ Z, and we look for an approximation of the solutions
at time tn+1.
Note that in this section, ζ is a given constant value.
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3.1. Limit of the classical HLL approach and simple modification. In
this part, the limit behaviour of the classical HLL approach is presented and a very
simple modification is proposed. In the present case, it is natural to use a mixed
explicit-implicit treatment to deal with the stiff source term. More precisely, a classical
HLL scheme with an implicit treatment of the source term is considered and it writes

(3.3)


fn+1

0,i − fn0,i
∆t

+
fn1,i+1/2 − fn1,i−1/2

∆x
= 0,

fn+1
1,i − fn1,i

∆t
+
fn2,i+1/2 − fn2,i−1/2

∆x
= −

2αei,if
n+1
1,i

ζ3
,

where the numerical fluxes fn1,i+1/2 and fn2,i+1/2 write

(3.4)


fn1,i+1/2 =

ζ

2
(fn1,i+1 + fn1,i)−

ax
2

(fn0,i+1 − fn0,i),

fn2,i+1/2 =
ζ

2
(fn2,i+1 + fn2,i)−

ax
2

(fn1,i+1 − fn1,i).

The wave speed ax is fixed using the ideas introduced in [5]. More precisely, it is
known from [39] that the electronic M1 model without electric field (3.1) is hyper-
bolic symmetrizable and that the eigenvalues of the Jacobian matrix lies in the interval
[−ζ, ζ]. Therefore, we set ax = ζ.

In order to perform the asymptotic analysis of the scheme, we consider the diffu-
sive scaling and we introduce the following discrete Hilbert expansion of fn0i and fn1i,
namely

(3.5)

{
fn0,i = fn,00,i + εfn,10,i +O(ε2),

fn1,i = fn,01,i + εfn,11,i +O(ε2).

System (3.3) rewrites

(3.6)


fn+1

0,i = fn0,i −
∆t

ε∆x
(fn1,i+1/2 − fn1,i−1/2),

fn+1
1,i =

ε2

ε2 +
2σi∆t

ζ3

(
fn1,i −

∆t

ε∆x
(fn2,i+1/2 − fn2,i−1/2)

)
,

and the second equation of (3.6) gives at order 1/ε

fn+1,0
1,i = 0, then fn+1,0

2,i = fn+1,0
0,i /3 for all n.

The same equation at the next order leads to

(3.7) fn+1,1
1,i = − ζ4

6σi

fn,00,i+1 − fn,00,i−1

2∆x
for all n,

which is correctly consistent with (2.5) in the case with no electric field (E = 0). We
thus clearly have by (3.4) that

fn,11,i+1/2 =
ζ

2
(fn,11,i+1 + fn,11,i )− ax

2

∆x

ε

fn0,i+1 − fn0,i
∆x

.
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We note that the centred part of this numerical flux is consistent with f1
1 by (2.5)

with E = 0 (thanks to (3.7)), but also that the diffusion term behaves like O(∆x/ε).
Therefore the numerical viscosity of the HLL scheme leads to a wrong asymptotic
behavior in the diffusive regime at a given fixed mesh size ∆x.

In order to overcome this major drawback and following [17, 16, 15], we propose
to modify the numerical fluxes (3.4) such that

(3.8)


fn1,i+1/2 =

ζ

2
(fn1,i+1 + fn1,i)−

axθ
n
i+1/2

2
(fn0,i+1 − fn0,i),

fn2,i+1/2 =
ζ

2
(fn2,i+1 + fn2,i)−

axθ
n
i+1/2

2
(fn1,i+1 − fn1,i),

where θni+1/2 is a free parameter chosen in such a way that in the diffusive limit

θni+1/2 = O(ε). Therefore, we assume that in the diffusive regime θni+1/2 can be
written under the form

θn = εθ1,n +O(ε2).

With such a modification, the numerical viscosity of the HLL scheme behaves like
O(∆x) in the diffusive regime and the first equation of (3.6) gives at order ε0

fn+1,0
0,i − fn,00,i

∆t
+ ζ

fn,11,i+1 − fn,11,i−1

2∆x
(3.9)

+ ax
θ1,n
i+1/2f

n,0
0,i+1 − (θ1,n

i+1/2 + θ1,n
i−1/2)fn,00,i + θ1,n

i−1/2f
n,0
0,i−1

2∆x
= 0.

By plugging (3.7) into (3.9) one obtains the following numerical scheme which is
correctly consistent with the limit equation (3.2)

fn+1,0
0,i − fn,00,i

∆t
− ζ

2∆x

( ζ4

6σi+1

fn−1,0
0,i+2 − fn−1,0

0,i

2∆x
− ζ4

6σi−1

fn−1,0
0,i − fn−1,0

0,i−2

2∆x

)
+ ax

θ1
i+1/2f

n,0
0,i+1 − (θ1

i+1/2 + θ1
i−1/2)fn,00,i + θ1

i−1/2f
n,0
0,i−1

2∆x
= 0.

Now, it remains to propose an explicit choice of θn which ensures the realisability
requirement of the numerical solution under an uniform (with respect to ε) CFL
condition on the time step ∆t. This is the aim of the next section.

3.2. Realisability requirement. In the previous part, we proposed a very sim-
ple modification of the HLL numerical fluxes that enables to capture the correct
asymptotic limit. At this stage, it is natural to wonder how such a modification may
affect the realisability requirement (1.4) of the numerical solution since the numeri-
cal viscosity of the scheme has been reduced when ε tends to zero by the correction
parameter θn. Given an realisable solution at a time tn, we now give the conditions
on θn and on the time step ∆t to ensure the realisability of the numerical solution at
time tn+1.

Theorem 3.1. (Unusable result)
The modified scheme (3.3)-(3.8) preserves the set of realisable states A under the

following conditions

(3.10) ∆t ≤ ∆x

ax||θn||∞
, and θni+1/2 = max(θ1,n

i+1/2, θ
2,n
i+1/2), ∀ i,
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where

θ1,n
i+1/2 = max

( |fn1,i|
fn0,i

,
|fn1,i+1|
fn0,i+1

)
, θ2,n

i+1/2 = max
( |fn1,i + βif

n
2,i|

fn0,i + βifn1,i
,
|fn1,i+1 + βi+1f

n
2,i+1|

fn0,i+1 + βi+1fn1,i+1

)
,

and

βi =
1

1 +
2αei,i∆t

ζ3

.(3.11)

In addition in the diffusive regime, θni+1/2 behaves like O(ε) in ε.

Proof. Let us first prove that fn+1
0i ≥ 0 for all i ∈ N.

Using (3.8), the first equation of (3.3) rewrites

fn+1
0,i = fn0,i(1−

ζ∆t(θni+1/2 + θni−1/2)

2∆x
) +

ζ∆t

2∆x
(θni+1/2f

n
0,i+1 − fn1,i+1)

+
ζ∆t

2∆x
(θni−1/2f

n
0,i−1 + fn1,i−1).

In order to ensure the positivity of fn+1
0,i , it is sufficient to prove that the three terms

in the right-hand side are positive. One obtains the positivity of fn+1
0,i under the

conditions

(3.12) ∆t ≤ 2∆x

ax(θni+1/2 + θni−1/2)
and θni+1/2 = max(

|fn1,i|
fn0,i

,
|fn1,i+1|
fn0,i+1

), ∀ i.

Let us now prove that |fn+1
1,i | ≤ fn+1

0,i for all i ∈ N which is equivalent to fn+1
0,i +fn+1

1,i ≥
0 and fn+1

0,i −fn+1
1,i ≥ 0. We will focus on fn+1

0,i +fn+1
1,i ≥ 0, the treatment of the other

inequality being similar. Considering (3.3) leads to

fn+1
0,i + fn+1

1,i =
ζ∆t

2∆x

(
θni+1/2f

n
0,i+1 − fn1,i+1 − βifn2,i+1 + βiθ

n
i+1/2f

n
1,i+1

)
+
ζ∆t

2∆x

(
θni−1/2f

n
0,i−1 + fn1,i−1 + βif

n
2,i−1 + βiθ

n
i−1/2f

n
1,i−1

)
+ fn0,i + βif

n
1,i −

ζ∆t(θni+1/2 + θni−1/2)

2∆x
fn0,i −

ζ∆tβi(θ
n
i+1/2 + θni−1/2)

2∆x
fn1,i.

It is sufficient to show that the terms of the right-hand side are positive. The positivity
of the first two terms is ensured provided that

(3.13) θni+1/2 = max(
|fn1,i + βif

n
2,i|

fn0,i + βifn1,i
,
|fn1,i+1 + βi+1f

n
2,i+1|

fn0,i+1 + βi+1fn1,i+1

).

The positivity of the sum of the remaining terms is ensured as soon as

∆t ≤ 2∆x

ax(θni+1/2 + θni−1/2)
,

which is the same CFL condition as for the first realisability condition fn+1
0,i ≥ 0 for

all i. The same approach but now considering fn+1
0,i −fn+1

1,i gives the same conditions.
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Finally, it is essential to notice that in the diffusive regime, θni+1/2 defined by

(3.12)-(3.13) as well as fn1,i ∀i ∈ N behave like O(ε) in ε. Indeed using the diffusive
scaling and a direct development in ε in the second equation of (3.6) gives

(3.14) fn+1
1,i = −ε ζ

4

6σi

fn,00,i+1 − fn,00,i−1

2∆x
+O(ε2).

Remark: Observe that the quantity (f1 + βf2)/(f0 + βf1) remains smaller or equal
to 1. Indeed, by introducing the anisotropic parameter γ defined such that

γ = f1/f0,

and using the definition (1.3) we get

f1 + βf2

f0 + βf1
=
γ + βχ(γ)

1 + βγ
,

which remains smaller or equal to 1 for all β ∈ [0, 1] and γ ∈ [−1, 1]. This quantity is
displayed in terms of β and γ on Figure 3.1.

Fig. 3.1: Representation of the quantity (γ + βχ(γ))/(1 + βγ) in terms of β and γ.

Remark: It is not really possible to use the CFL condition (3.12) as it stands since
the parameter θn depends on β which depends itself on ∆t by (3.11). In order to
overcome this issue, based on this unpractical result, we propose the following condi-
tions
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Theorem 3.2. (Usable result)
The modified scheme (3.3)-(3.8) preserves the set of realisable state A under the

following conditions

(3.15) ∆t = KCFL ∆x

ax||θ∆x,n||∞
, and θ∆x,n

i+1/2 = max(θ1,n
i+1/2, θ

2,∆x,n
i+1/2 ), ∀ i,

where

θ1,n
i+1/2 = max

( |fn1,i|
fn0,i

,
|fn1,i+1|
fn0,i+1

)
, θ2,∆x,n

i+1/2 = max
( |fn1,i + β∆x

i fn2,i|
fn0,i + β∆x

i fn1,i
,
|fn1,i+1 + β∆x

i+1f
n
2,i+1|

fn0,i+1 + β∆x
i+1f

n
1,i+1

)
,

and

β∆x
i =

1

1 +
2αei,iK

CFL∆x

axζ3

,(3.16)

with KCFL ∈ [0, 1].

In addition in the diffusive regime, θ∆x,n
i+1/2 behaves like O(ε) in ε.

Proof. First of all, we start showing that

(3.17) β∆x
i ∈ [0, 1], θ∆x,n

i+1/2 ∈ [0, 1], for all i.

The first condition is straightforward considering the definition (3.16). The second
condition has been shown while proving the previous theorem.
Secondly the following inequality is proved

(3.18) βi ≤ β∆x
i .

Indeed, by considering the time step definition (3.15) and the conditions (3.17) we
get the following estimate

∆xKCFL

ax
≤ ∆xKCFL

ax||θ∆x,n||∞
= ∆t,

which enables to obtain an upper bound of β independant of ∆t

βi =
1

1 +
2αei,i∆t

ζ3

≤ 1

1 +
2αei,iK

CFL∆x

axζ3

= β∆x
i .

Consequently since γ+βχ(γ)
1+βγ is an increasing function with respect to β it follows that

(3.19) θni+1/2 ≤ θ∆x,n
i+1/2.

Finally, from (3.19) one obtains

(3.20) ∆t = KCFL ∆x

ax||θ∆x,n||∞
≤ ∆x

ax||θn||∞
.

Considering the diffusive scaling, β∆x
i rewrites

β∆x
i =

ε

ε+
2σiK

CFL∆x

axζ3

,
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which behaves like O(ε). It follows that θ∆x,n
i+1/2 behaves like O(ε) in ε. Then consid-

ering (3.19)-(3.20) and Theorem 3.1 gives Theorem 3.2.

4. Approximate Riemann solvers interpretation. In this part we show that
the numerical scheme derived in the previous section is equivalent to a Godunov-type
scheme based on a particular approximate Riemann solver.

Extending the ideas introduced in [25, 24, 10, 16], we consider an approximate
solver of the following form

(4.1) UR(x/t, UL, UR) =


UL(t) if x/t < −axθ,
UL∗(t) if − axθ < x/t < 0,

UR∗(t) if 0 < x/t < axθ,

UR(t) if axθ < x/t,

where the intermediate states UL∗(t) = t(fL∗0 , fL∗1 (t)), UR∗(t) = t(fR∗0 , fR∗1 (t)), the
minimum and maximum speeds of propagation −axθ and axθ and the states UL(t)
and UR(t) have to be defined. We note that the proposed approximate Riemann solver
is made of three well-ordered waves, the second one being stationary. The quantities
UL(t) and UR(t) stand for UL(t) = t(fL0 , f

L
1 (t)) and UR(t) = t(fR0 , f

R
1 (t)). At this

stage, it is crucial to notice that the second component of the constant (in space)
states UL, UL∗, UR∗, UR actually depend on t and that we will have fL1 (0) = fL1 and
fR1 (0) = fR1 . The structure of the approximate Riemann solver is displayed on Fig.
4.1.

−axθ axθ

t

x

UR(t)UL(t)

UR∗(t)UL∗(t)

Fig. 4.1: Structure of the approximate Riemann solver.

Following the classical Godunov-type procedure to compute a piecewise constant
approximate solution Un+1

i on each cell Di =]xi−1/2, xi+1/2[ at time tn+1, the exact
solution w of (3.1) is averaged on each cell and

(4.2) Un+1
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

w(∆t, x)dx.
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Instead of solving (3.1) exactly, one suggests to use the approximate Riemann solver
(4.1) at each interface and to replace w by w̃ defined as the juxtaposition of the
approximate Riemann solutions as follows

w̃(x, t) = UR((x− xi+1/2)/t, Uni , U
n
i+1), if x ∈ [xi, xi+1].

Let us now explain the derivation of the intermediate states UL∗(t) and UR∗(t).
Following [33], we impose that the integral at time ∆t of the approximate Riemann

solution (4.1) over the slab [−∆x
2 , ∆x

2 ] under the CFL condition ∆t ≤ ∆x

2axθn
equals

the integral of the exact Riemann solution to (3.1), which gives here for the first
equation

(
∆x

2
− axθn∆t)fL0 + axθ

n∆tfL∗0 + axθ
n∆tfR∗0 + (

∆x

2
− axθn∆t)fR0

=
∆x

2
(fL0 + fR0 )− ζ

∫ ∆t

0

(fR1 (t)− fL1 (t))dt

that is to say

fL∗0 + fR∗0

2
=
fL0 + fR0

2
− ζ

2axθn∆t

∫ ∆t

0

(fR1 (t)− fL1 (t))dt,

which can be approximated by

fL∗0 + fR∗0

2
=
fL0 + fR0

2
− ζ

2axθn
(fR1 − fL1 ),

using the left rectangle (time explicit) quadrature formula and since fR1 (0) = fR1 and
fL1 (0) = fL1 . Therefore a natural choice consists in setting

(4.3) fL∗0 = fR∗0 =
fL0 + fR0

2
− ζ

2axθn
(fR1 − fL1 ).

Before considering the second equation of (3.1), let us define fR1 (t) and fL1 (t) in the
approximate Riemann solver (4.1). Since there is a source term, using the ideas of
[4], we compute f1i(t) as solution of the following ordinary differential equation

(4.4)
df1(t)

dt
= −2αeif1(t)

ζ3
,

with f1(0) = fL1 or f1(0) = fR1 . This equation can be solved exactly, however,
in order to recover the numerical scheme (3.3)-(3.8), we choose a standard implicit
discretisation which gives

(4.5) fL,R1 (t) =
1

1 +
2αL,Rei ∆t

ζ3

fL,R1 , ∀ t ∈ [0,∆t].

Considering now the second equation of (3.1), the same approach gives

(
∆x

2
− axθn∆t)fL1 (∆t) + axθ

n∆tfL∗1 (∆t) + axθ
n∆tfR∗1 (∆t) + (

∆x

2
− axθn∆t)fR1 (∆t)

=
∆x

2
(fL1 (0) + fR1 (0))− ζ

∫ ∆t

0

(fR2 (t)− fL2 (t))dt−
∫ ∆t

0

∫ ∆x
2

−∆x
2

2αei(x)

ζ3
f1dxdt,
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that is to say, since fR1 (0) = fR1 and fL1 (0) = fL1 ,

fL∗1 (∆t) + fR∗1 (∆t)

2
=
fL1 (∆t) + fR1 (∆t)

2
+

∆x

4axθn∆t
(fL1 + fR1 )

− ∆x

4axθn∆t
(fL1 (∆t) + fR1 (∆t))− ζ

2axθn∆t

∫ ∆t

0

(fR2 (t)− fL2 (t))dt(4.6)

− 1

2axθn∆t

∫ ∆t

0

∫ ∆x
2

−∆x
2

2αei(x)

ζ3
f1dxdt.

Let us try to simplify this equality. We first notice that∫ ∆t

0

∫ ∆x
2

−∆x
2

2αei(x)

ζ3
f1dxdt =

∫ ∆t

0

∫ axθ
n∆t

−axθn∆t

2αei(x)

ζ3
f1dxdt

+ (
∆x

2
− axθn∆t)

∫ ∆t

0

2αei(x)

ζ3
f1dxdt+ (

∆x

2
− axθn∆t)

∫ ∆t

0

2αei(x)

ζ3
f1dxdt,

which gives by (4.4) to evaluate the last two integrals∫ ∆t

0

∫ ∆x
2

−∆x
2

2αei(x)

ζ3
f1dxdt ≈− (

∆x

2
− axθn∆t)(fR1 (∆t)− fR1 )

− (
∆x

2
− axθn∆t)(fL1 (∆t)− fL1 )

+

∫ ∆t

0

∫ axθ
n∆t

−axθn∆t

2αei(x)

ζ3
f1dxdt.

Now using a right-rectangle (time implicit) quadrature formula, we get

−
∫ ∆t

0

∫ ∆x
2

−∆x
2

2αei(x)

ζ3
f1dxdt ≈(

∆x

2
− axθn∆t)(fR1 (∆t)− fR1 )

+(
∆x

2
− axθn∆t)(fL1 (∆t)− fL1 )(4.7)

−2axθ
n∆t2αLei
ζ3

fL∗1 (∆t)− 2axθ
n∆t2αRei
ζ3

fR∗1 (∆t).

Let us then use a left rectangle (time explicit) quadrature formula to write

(4.8)
ζ

2axθn∆t

∫ ∆t

0

(fR2 (t)− fL2 (t))dt ≈ ζ

2axθn
(fR2 − fL2 ).

Inserting (4.7) and (4.8) in (4.6) gives after easy calculation

fL∗1 (∆t) + fR∗1 (∆t)

2
=
fL1 + fR1

2
− ζ

2axθn
(fR2 −fL2 )−∆t

2
(
2αLei
ζ3

fL∗1 (∆t)+
2αRei
ζ3

fR∗1 (∆t)).

Following the same procedure as for the first equation we consider the intermediate
states

(4.9)


fL∗1 (∆t) = (

1

1 +
2∆tαL

ei

ζ3

)(
fL1 + fR1

2
− ζ

2axθn
(fR2 − fL2 )),

fR∗1 (∆t) = (
1

1 +
2∆tαR

ei

ζ3

)(
fL1 + fR1

2
− ζ

2axθn
(fR2 − fL2 )).
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Now using the relation (4.2) but with the approximate Riemann solver instead of the
exact one, and considering that θn takes a positive value θni+1/2 at each interface, the

numerical solution at time tn+1 is given by

(4.10)



fn+1
0,i =

axθ
n
i−1/2∆t

∆x
fR∗0,i−1/2 + (1−

ax(θni−1/2 + θni+1/2)∆t

∆x
)fn0,i

+
axθ

n
i+1/2∆t

∆x
fL∗0,i+1/2,

fn+1
1,i =

axθ
n
i−1/2∆t

∆x
fR∗1,i−1/2(∆t) + (1−

ax(θni−1/2 + θni+1/2)∆t

∆x
)f1,i(∆t)

+
axθ

n
i+1/2∆t

∆x
fL∗1,i+1/2(∆t).

A direct calculation using the definitions (4.3)-(4.9)-(4.5) enables us to recover the
scheme (3.3) with the numerical fluxes (3.8). Therefore the asymptotic-preserving
scheme (3.3)-(3.8) can be interpreted as a Godunov-type scheme based on the ap-
proximate Riemann solver (4.1).

Conditions (3.10) on the parameter θn can be recovered by considering the inter-
mediate states of (4.1). Indeed, since the numerical scheme (4.10) writes as a convex
combination and the realisable set is convex, the realisability of the intermediate states
UL∗ and UR∗ yields the realisability of the numerical solution at time tn+1 under the
usual CFL condition

∆t ≤ ∆x

2ax||θn||∞
.

Computing fL∗0 ±fL∗1 and fR∗0 ±fR∗1 and using the definitions (4.3) and (4.9) enables
to recover the conditions (3.10) by a simple calculation.

5. Extension to the general model. In this part, we extend the asymptotic-
preserving scheme we derived in the previous section to the M1 model (1.1) with non
zero electric field E.

5.1. General scheme. Extending our previous ideas, we use a j index to deal
with the ζ variable and we propose the following numerical scheme

(5.1)

fn+1
0,ij − fn0,ij

∆t
+
fn1,i+1/2j − fn1,i−1/2j

∆x
+
fn1,ij+1/2 − fn1,ij−1/2

∆ζ
= 0,

fn+1
1,ij − fn1,ij

∆t
+
fn2,i+1/2j − fn2,i−1/2j

∆x
+
fn2,ij+1/2 − fn2,ij−1/2

∆ζ

− Ei
(fn0,ij − fn2,ij)

ζj
= −

2αei,if
n+1
1,ij

ζ3
j

,

where the numerical fluxes used are defined by

(5.2)


fn1,i+1/2j =

ζj
2

(fn1,i+1j + fn1,ij)−
axθ

n
1,i+1/2j

2
(fn0,i+1j − fn0,ij),

fn2,i+1/2j =
ζj
2

(fn2,i+1j + fn2,ij)−
axθ

n
1,i+1/2j

2
(fn1,i+1j − fn1,ij),
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and

(5.3)


fn1,ij+1/2 =

Ei
2

(fn1,ij+1 + fn1,ij)−
aζθ

n
2,ij+1/2

2
(fn0,ij+1 − fn0,ij),

fn2,ij+1/2 =
Ei
2

(fn2,ij+1 + fn2,ij)−
aζθ

n
2,ij+1/2

2
(fn1,ij+1 − fn1,ij).

The correction coefficients θn1 and θn2 are fixed in order to ensure the realisability
requirement and the asymptotic-preserving property. We take ax = ζj and aζ = |Ei|.
For the sake of clarity, we omit the dependency of the speed ax in velocity modulus
and aζ in space.

5.2. Properties. In this part, the properties of the numerical scheme (5.1)-(5.2)-
(5.3) are detailed. It is first shown that the scheme preserves the realisability of the
numerical solution under suitable conditions, and then that the asymptotic-preserving
property holds true.

Theorem 5.1. The numerical scheme (5.1)-(5.2)-(5.3) preserves the set of real-
isable states A under the following conditions

∆t ≤ ∆x∆ζ

ax||θ∆x,n
1 ||∞∆ζ + aζ ||θ∆x,n

2 ||∞∆x+ 4||β∆x||∞||E||∞∆x
,(5.4)

where

β∆x
i =

1

1 +
2αei,iK

CFL∆x∆ζ

(ax∆ζ + aζ∆x+ 4||E||∞∆x)ζ3

,

and

(5.5) θ∆x,n
1,i+1/2j = max(θ1,n

1,i+1/2j , θ
2,∆x,n
1,i+1/2j), θn2,ij+1/2 = max(θ1,n

2,ij+1/2, θ
2,∆x,n
2,ij+1/2),

with

θ1,n
1,i+1/2j = max

( |fn1,ij |
fn0,ij

,
|fn1,i+1j |
fn0,i+1j

)
,

θ2,∆x,n
1,i+1/2j = max

( |fn1,ij + β∆x
ij f

n
2,ij |

fn0,ij + β∆x
ij f

n
1,ij

,
|fn1,i+1j + β∆x

i+1jf
n
2,i+1j |

fn0,i+1j + β∆x
i+1jf

n
1,i+1j

)
,

θ1,n
2,ij+1/2 = max

( |fn1,ij |
fn0,ij

,
|fn1,ij+1|
fn0,ij+1

)
,

θ2,∆x,n
2,ij+1/2 = max

( |fn1,ij + β∆x
ij f

n
2,ij |

fn0,ij + β∆x
ij f

n
1,ij

,
|fn1,ij+1 + β∆x

ij+1f
n
2,ij+1|

fn0,ij+1 + β∆x
ij+1f

n
1,ij+1

)
.

Proof. The proof follows exactly the same lines as in the case with no electric field.
The property is obtained by computations of fn+1

0ij ± fn+1
1ij under the CFL condition

∆t ≤ ∆x∆ζ

ax||θn1 ||∆x+ aζ ||θn2 ||∆ζ + ||βE
ζ

(
fn0 − fn2
fn0 + βfn1

)||∞∆x∆ζ

.(5.6)
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Remark: Introducing the anisotropic parameter γ defined by γ = f1/f0 and using
the definition (1.3), we get

f0 − f2

f0 + βf1
=

1− χ(γ)

1 + βγ
.

This quantity is displayed in terms of β and γ on Figure 5.1 and it is interesting to note
that it is bounded and remains less than 2, which also applies to (fn0 −fn2 )/(fn0 +βfn1 )
for all n. This is essential in order to keep the CFL condition acceptable. Also
since min

j
(ζj) = ∆ζ/2, the parameter ∆ζ simplifies and one obtains (5.4). Therefore

following the same procedure as in the case without electric field, instead of using
(5.6), we consider the CFL condition (5.4).

Fig. 5.1: Representation of the quantity (1− χ(γ))/(1 + βγ) in terms of β and γ.

The asymptotic-preserving property of the scheme is now stated.
Theorem 5.2. (Consistency with the limit diffusion equation)

In the limit ε tends to zero, the limit of the numerical scheme (5.1) is consistent with
the limit diffusion equation (2.6).

Proof. Using again discrete Hilbert expansions the second equation of (5.1) at
order 1/ε gives fn+1,0

1,ij = 0 and then fn+1,0
2,ij = fn+1,0

0,ij /3 for all n and j. The same
equation at the next order leads to

(5.7) fn+1,1
1,ij = −

ζ3
j

2σi
(−ζj

3

fn,00,i+1j − fn,00i−1j

2∆x
+
Ei
3

fn,00,ij+1 − fn,00,ij−1

2∆ζ
+

2Ei
3

fn,00,ij

ζj
),

which is consistent with (2.5). Thanks to the correction parameters θε1 and θε2, the
numerical viscosity of the scheme behaves like O(∆x) and the first equation of (5.1)
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gives at the order O(ε0)

fn+1,0
0,ij − fn,00,ij

∆t
− ζj

fn,11,i+1j − fn,11,i−1j

2∆x

+ ax
θ1,n

1,i+1/2jf
n,0
0,i+1j − (θ1,n

1,i+1/2j + θ1,n
1,i−1/2j)f

n,0
0,ij + θ1,n

1,i−1/2jf
n,0
0,i−1j

2∆x
(5.8)

− Ei
fn,11,ij+1 − fn,11,ij−1

2∆ζ

+ aζ
θn2,ij+1/2f

n,0
0,ij+1 − (θn2,ij+1/2 + θn2,ij−1/2)fn,00,ij + θn2,ij−1/2f

n,0
0,ij−1

2∆ζ
= 0,

which is clearly consistent with the limit diffusion equation (2.6).

We conclude this part giving a strong stability result by studying the behavior of
the CFL condition in the diffusion limit.

Theorem 5.3. (Realisability preserving property and parabolic CFL condition)
In diffusion regimes the CFL condition (5.4) degenerates into a parabolic CFL condi-
tion.

Proof. The diffusive scaling is considered and we look at the limit ε tends to zero.
We start studying the CFL condition (5.4) in the diffusive regime in the simplified
case of a zero electric field and a constant collisional parameter first. In this case the
CFL condition (5.4) writes

∆t = KCFL ε∆x

ax||θ∆x,n||∞
,(5.9)

and β∆x
i reads

β∆x
i =

ε

ε+
σKCFL∆x

ax

.

This CFL condition can be discussed further. Indeed, by using the definitions (5.5)
and (5.9) we get

θ∆x = γ +
axε

3σKCFL∆x
+O(ε2),

and one recovers a one-dimension parabolic CFL condition

∆t =
3σ(KCFL∆x)2

3σax||γ̄||∞KCFL∆x+ a2
x

+O(ε),(5.10)

with γ̄ = f1/(εf0) = O(ε0).
In the general case of a non-constant electric field (we still keep constant collisional
parameters for the clarity of the paper) the same procedure with the CFL condition
(5.4) gives

3σ(KCFL∆x∆ζ)2 +O(ε)

∆t
=

+ 3axσK
CFL∆x∆ζ2||γ̄||∞ + a2

x∆ζ2 + axaζ∆x∆ζ + 4ax||E||∞∆x∆ζ(5.11)

+ 3aζσK
CFL∆x2∆ζ||γ̄||∞ + axaζ∆x∆ζ + a2

ζ∆x
2 + 4aζ ||E||∞∆x∆ζ

which correctly behaves as a two-dimension parabolic CFL condition.
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5.3. Accuracy enhancement. In order to prepare the next section devoted to
the numerical experiments, we briefly mention that a second-order type improvement
of our scheme will be considered. The underlying strategy, based on the usual second-
order Van Leers slope limiter [37] method, will lead to a significant improvement of the
numerical solutions. More precisely and following [37], piecewise linear reconstructions
are considered and the corresponding extrapolated values at each interface are used
in the numerical fluxes (5.2)-(5.3). On the other hand, the θn1 and θn2 coefficients are
still defined by (5.5).

In order to give a justification of our approach, we suggest to renew the analysis
of section (3.1) up to the second-order accuracy in space. For the sake of simplicity,
we consider the case with no electric field. The second-order accuracy in space can
be obtained with our scheme considering linear reconstructions. More precisely, we
define for all i the following extrapolated states

fn,±0,i = fn0,i ± σ̄0,i
∆x

2
,

where the slope σ̄0i can be defined for example by

σ̄0,i =
(fn0,i+1 − fn0,i−1)

2∆x
.

The extrapolated states f±1,i are defined in a similar way, while the extrapolated states

f±2,i follow using the closure relation defining f2. Now, a second order extension of
our scheme is obtained by replacing the first order numerical fluxes (3.8) by

(5.12)


fn1,i+1/2 =

ζ

2
(fn,−1,i+1 + fn,+1,i )−

axθ
n
i+1/2

2
(fn,−0,i+1 − fn,+0,i ),

fn2,i+1/2 =
ζ

2
(fn,−2,i+1 + fn,+2,i )−

axθ
n
i+1/2

2
(fn,−1,i+1 − fn,+1,i ).

Using (5.12) the space second-order scheme then writes

fn+1
0,i − fn0,i

∆t
+ ζ

fn1,i+1 − fn1,i−1

2∆x
− ζ

fn1,i+2 − 2fn1,i+1 + 2fn1,i−1 − 2fn1,i−2

8∆x

− ax
θni+1/2(−fn0,i+2 + 3fn0,i+1 − 3fn0,i + fn0,i−1)− θni−1/2(−fn0,i+1 + 3fn0,i − 3fn0,i−1 + fn0,i−2)

8∆x
= 0,

fn+1
1,i − fn1,i

∆t
+ ζ

fn2,i+1 − fn2,i−1

2∆x
− ζ

fn2,i+2 − 2fn2,i+1 + 2fn2,i−1 − 2fn2,i−2

8∆x

(5.13)

− ax
θni+1/2(−fn1,i+2 + 3fn1,i+1 − 3fn1,i + fn1,i−1)− θni−1/2(−fn1,i+1 + 3fn1,i − 3fn1,i−1 + fn1,i−2)

8∆x

= −
2αei,if

n+1
1,i

ζ3
.

One can check by direct Taylor expansions that this scheme is second-order accurate
in space.

Asymptotic-preserving property
Following the procedure used in section (3.1), using the diffusive scaling and discrete
Hilbert expansion one obtains that at order 1/ε

fn+1,0
1,i = 0, then fn+1,0

2,i = fn+1,0
0,i /3 for all n.
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The same equation at the next order leads to

fn+1,1
1,i = − ζ4

6σi

fn,00,i+1 − fn,00,i−1

2∆x
− ζ4

6σi

fn,00,i+2 − 2fn,00,i+1 + 2fn,00,i−1 − fn,00,i−2

8∆x
for all n,

(5.14)

which is correctly consistent with (2.5) in the case with no electric field (E = 0). We
thus clearly have by (5.12)

fn1,i+1/2 =
ζ

2

(
(fn1,i+1 + fn1,i) +

(−fn1,i+2 + fn1,i+1 + fn1,i − fn1,i−1)

4

)
(5.15)

+
axθ

n
i+1/2∆x2

2ε

(−fn0,i+2 + 3fn0,i+1 − 3fn0,i + fn0,i−1

4∆x2

)
.

Now, as in the case of the first order scheme, thank to the modification, the numerical
viscosity now behaves inO(∆x2) instead of O(∆x2/ε) as with a standard second-order
HLL scheme. In addition, the first equation of (3.6) now gives at order ε0

fn+1,0
0,i − fn,00,i

∆t
+ ζ

fn,11,i+1 − fn,11,i−1

2∆x
− ζ

fn,11,i+2 − 2fn,11,i+1 + 2fn,11,i−1 − 2fn,11,i−2

8∆x

− ax
θ1,n
i+1/2(−fn,00,i+2 + 3fn,00,i+1 − 3fn,00,i + fn,00,i−1)− θ1,n

i−1/2(−fn,00,i+1 + 3fn,00,i − 3fn,00,i−1 + fn,00,i−2)

8∆x
= 0.

(5.16)

Finally by plugging (5.14) in (5.16) one obtains a numerical scheme which is consis-
tent with the limit equation (3.2).

Remark: The present scheme may produce spurious oscillations since no limitations
has been considered in order to keep the explanation simple. In practice standard
limitation techniques are used.

The full accuracy extension in space and time is beyond the scope of this study
and is currently under investigation in an extended framework considering more gen-
eral systems and higher order extensions [18].

Remark: In practice, the realisability is checked at each time step. In case the
numerical solution is not realisable, it is recomputed using the classical scheme with
no reconstruction, in the spirit of the MOOD approach (see for instance [8] and the
references therein).

6. Numerical results. This section is devoted to numerical experiments. De-
pending on the collisional regime, our asymptotic-preserving scheme is compared to
a time explicit finite difference discretisation of the limit diffusion equation [2] and
with a standard HLL scheme. The time step of the asymptotic-preserving scheme is
computed with (5.4).

Test 1 : relaxation of a gaussian profile in different collisional regimes.
In this first test case, three different collisional regimes are considered with the same
initial condition given by{

f0(t = 0, x, ζ) = ζ2 exp(−(ζ − 2)2) exp(−x2),

f1(t = 0, x, ζ) = 0,
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for (x, ζ) in [−10 : 10]×[0, 6] and displayed on Fig. 6.1. The electric field E is taken to
be constant and equal to 1. Neumann boundary conditions are considered and ghost
cells are used from a practical point of view. The space step ∆x equals 2.5 · 10−2 and
the modulus energy step ∆ζ is 5 · 10−2.
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Fig. 6.1: Representation of the f0 profile at the initial time.

Test 1a : the free transport regime.
In this case, the collisional parameter αei is set to zero. On Fig. 6.2, we present
the solutions obtained with the classical HLL scheme and our asymptotic-preserving
scheme, with and without piecewise linear reconstruction. In this transport regime,
one can observe that both schemes give close results and that the piecewise linear
reconstructions allow to reduce the numerical diffusion. The relative L1 error between
the HLL and the AP scheme is 8.2 · 10−2 in the case without linear reconstructions
and 1.0 · 10−2 in the case with linear reconstructions.

Test 1b : the diffusive regime.
In this case, the collisional parameter is set to 104. Fig 6.3 shows the f0 profile ob-
tained with the asymptotic-preserving scheme, the usual HLL scheme and an explicit
discretisation of the diffusion equation at times t = 20 and t = 100. The results
given with the second-order extension are given on Fig 6.4. We clearly see that the
classical HLL scheme is very diffusive while the asymptotic-preserving scheme gives
a much more accurate numerical solution. However, at time t = 100, the solution is
quite different from the expected diffusion profile. Turning now to the second-order
extension, the asymptotic-preserving solution is now very close to the exact one, while
the HLL scheme remains very diffusive. The solution obtained with the AP scheme
using the piecewise linear reconstructions at time t = 500 is displayed on Figure 6.5.

Test 1c : non-constant collisional parameter.
In this case, the collisional parameter αei depends on x and is given by

αei(x) = 103 ·
(

arctan(1 + 0.5 · x) + arctan(1− 0.5 · x)
)
,
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Fig. 6.2: Test 1a: representation of the f0 profiles obtained with a HLL scheme (left)
and the AP scheme (right) with (top) and without (bottom) linear reconstructions

at time t = 2 in the case without collisions.

see Fig. 6.6. On Fig. 6.7, one clearly sees that the solution obtained with the second-
order HLL scheme is much more diffused than the one obtained with the second-order
asymptotic-preserving scheme.

Test 2: Discontinuous f0 profile with non-constant electric field and non-constant col-
lision parameter.
We now consider the temporal evolution of a discontinuous f0 profile with inhomo-
geneous electric field and non-constant collision parameter. The initial condition is
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Fig. 6.3: Test 1b : representation of the f0 profiles obtained with the first order HLL
scheme (left), the first order AP scheme (middle) and the diffusion scheme (right) at
time t = 20 (top) and t = 100 (bottom) in the diffusive regime with αei = 104.
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Fig. 6.4: Test 1b : representation of the f0 profiles obtained with the second order HLL
scheme (left), the second order AP scheme (middle) and the diffusion scheme (right)
at time t = 20 (top) and t = 100 (bottom) in the diffusive regime with αei = 104.
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Fig. 6.5: Test 1b: representation of the f0 profiles obtained with the AP scheme
without (left) and with (middle) piecewise linear reconstructions and the diffusion
scheme (right) at time t = 500 in the case αei = 104.
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Fig. 6.6: Test 1c : representation of the collisional parameter profile αei.

discontinuous and given by
f ini0 (x, ζ) =


4√
π
ζ2 exp(−ζ2) if x < 0,

2√
π
ζ2 exp(−ζ2) if x > 0,

f ini1 (x, ζ) = 0,

for (x, ζ) in [−10, 10]× [0, 6]. The non-constant electric field and collisional parameter
are given by

E(x) = exp(−|x|), αei(x) = A ·
(

arctan(1 + 0.5 · x) + arctan(1− 0.5 · x)
)
,
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Fig. 6.7: Test 1c : representation of the f0 profile obtained with the HLL scheme
(left) and the asymptotic-preserving scheme (right) at time t = 100 in the case of a
non-constant collisional parameter.

where the constant A will be specified hereafter. Neumann boundary conditions are
considered and we take ∆x = ∆ζ = 10−1. We define the electronic density n by

n(x) =

∫ +∞

0

f0(x, ζ)dζ.

Fig. 6.8 shows the electronic density profiles obtained with the second-order HLL
and asymptotic-preserving schemes at different times and for different values of A.
For A = 1 corresponding to a weak collisional regime, we observe that HLL and
asymptotic-preserving schemes are really close. On the contrary, as noticed in the
previous test case, in strong collisional regimes, the results obtained with the HLL
scheme are much more diffused that the ones obtained with the asymptotic-preserving
scheme. Indeed, in the case A = 104 it is observed that the profile obtained with the
asymptotic-preserving scheme is very close to the one obtained with the diffusion
scheme while the second order HLL scheme is not accurate.

7. Conclusion. In this work, a new asymptotic-preserving scheme has been
proposed for the electronic M1 model. It is based on a very simple modification
of the HLL scheme in order to capture the correct asymptotic limit in the diffusive
limit. This modification also ensures the realisability of the numerical solution under
suitable CFL conditions. The new scheme has also been understood as a Godunov-
type scheme based on a given approximate Riemann solver. Several numerical test
cases have been proposed to show the relevance of the proposed scheme in different
regimes.
Considering the perspectives of this work, we would like to provide a rigorous analysis
of the proposed second-order type extension. We are also interested in considering
the contribution of an electron-electron collision operator and the coupling with the
Maxwell-Ampere equation.



24 C. Chalons, S. Guisset

−10 −5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

d
en

si
ty

Initial condition

HLL

AP

−10 −5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

d
en

si
ty

Initial condition

HLL

AP

−10 −5 0 5 10
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
en

si
ty

Initial condition

HLL

AP

−10 −5 0 5 10
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
en

si
ty

Initial condition

HLL

AP

−10 −5 0 5 10
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
en

si
ty

Initial condition

HLL

AP

diffusion

−10 −5 0 5 10
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
en

si
ty

Initial condition

HLL

AP

diffusion

Fig. 6.8: Test 2 : representation of the density profiles obtained with the HLL scheme
(red), with the AP scheme (green) and with the diffusion scheme (blue) at time t = 50
(left) and t = 400 (right) for A = 1 (top), A = 102 (middle) and A = 104 (bottom).
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