
Classical transport theory for the collisional electronic M1 model

S. Guisset1,2, S. Brull1, E. d’Humières2, B. Dubroca2, V.T. Tikhonchuk2

Abstract. The electronic M1 model is widely used for electron transport studies in a hot col-
lisional plasma. However, the moment extraction of the electron-electron collision operator from
the kinetic collision operator, for this angular moments model, is challenging and some approx-
imations are required. In this work a characterisation of the electron-electron and electron-ion
collision operators is given and the electron plasma transport coefficients are derived. It is
shown that in the high Z limit the electronic M1 model and the Fokker-Planck-Landau equation
coincide in the case of near equilibrium. Also, in general, the electron-electron collision opera-
tor proposed for the electronic M1 model recovers accurate electron transport plasma coefficients.
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1 Introduction

It was proposed to use laser pulses in order to compress a deuterium-tritium target and ignite
the nuclear fusion reactions. In this process the energy is transported from the critical surface to
denser parts of plasma by electrons. This process plays a key role in the understanding of plasma
phenomena such as, parametric [31, 17] and hydrodynamic [39, 46, 12] instabilities, laser-plasma
absorption [38, 21], wave damping [25, 11], energy redistribution and hot spot formation [7, 29].
Lasers produce a collisional ionised hot plasma, where the electron-ion mean free path is small
compared to the plasma characteristic spatial size and the distribution function is close to the
isotropic Maxwellian function. The physics of laser plasma interaction is described within the
hydrodynamic plasma model. However, the moment extraction of the electron kinetic equation
leads to an unclosed hydrodynamic set of equations. The closure of the system requires to express
the fluxes in terms of the hydrodynamic variables and electron plasma transport coefficients.
Spitzer and Härm first derived the electron plasma transport coefficients solving numerically
the kinetic Fokker-Planck-Landau equation using the expansion of the electron mean free path
over the temperature scale length. Their results have been reproduced in other works [6, 3, 40]
using the early works of Chapman [8, 9] and Enskog [16] for neutral gases. However, the
Spitzer-Härm theory is valid in the local regime where the electron flux is proportional to the
temperature gradient. Indeed the electron transport plasma coefficient were derived in the case
where the electron distribution function remains close to the isotropic Maxwellian function.
However, in the context of inertial confinement fusion, the plasma particles may have an energy
distribution far from the thermodynamic equilibrium so that the classical transport description
is not adapted [34]. Moreover kinetic effects like the non local transport [7, 29], wave damping
or the development of instabilities [12] can be important over time scales shorter than the
collisional time so that fluid simulations are insufficient. Therefore, a kinetic description is
more appropriate for the study of inertial confinement fusion processes. However such a kinetic
description is computationally expensive for describing real physical applications. Kinetic codes
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are limited to time and length much shorter than those studied with fluid simulations. It is
therefore an essential issue to describe kinetic effects by using reduced kinetic codes operating
on fluid time scales.

Angular moments models can be seen as a compromise between kinetic and fluid models.
On one hand, they have an advantage to be less computationally expensive than full kinetic
models since less variables are involved and, on the other hand, they provide results with a
higher accuracy than fluid models. Grad [18], initially proposed a moment closure hierarchy
which leads to a hyperbolic set of equations for close equilibrium flows. The hierarchy proposed
is based on a polynomial series expansion of a distribution function close to the Maxwellian
equilibrium. However, the truncation of this expansion leads to a loss of the positivity of the
distribution function and to unrealisable moments. In [26, 32, 33, 42, 1], closures based on
entropy minimisation principles are investigated. It has been shown that this closure choice
enables to preserve fundamental properties such as the positivity of the underlying distribution
function, the hyperbolicity of the model and an entropy dissipation condition [19, 30, 26]. In
this work, the moment model is based on an angular moments extraction. The kinetic equation
is integrated only with respect to the velocity direction while the velocity modulus is kept as
a variable. The closure used based on an entropy minimisation principle gives the angular
M1 model. The angular M1 model is used in numerous applications such as radiative transfer
[45, 5, 15, 44, 10, 36, 37], radiotherapy [35] or electron transport [27, 13, 21, 20]. This model
satisfies fundamental properties and recovers the asymptotic diffusion equation in the limit of
long time behaviour when collisions dominate [14].

The electronic M1 model is derived integrating with respect to the velocity direction the
Fokker-Planck-Landau equation. However, since the electron-electron collision operator is non-
linear, the moments extraction is complex. A possibility could be to approximate the electron-
electron collision operator assuming the main contribution of the distribution function comes
from its isotropic part [4]. However, as mentioned in [28], the collisional electronic M1 model
obtained by angular integration does not ensure the preservation of the admissibility states,
that is the angular moments derive from a positive underlying distribution function. There-
fore, a new electron-electron collision operator was proposed in [28]. In this model, the angular
integration leads to a electron-electron collision operator for the electronic M1 model which
preserves the admissible states. In this work, we start to recall the main results established in
[27, 28] and complete them with an important result characterising the equilibrium states of
the collision operators. Such fundamental properties make the model interesting for practical
applications. In addition, to complete the validation of the considered collisional electronic M1

model, we derive the electron transport coefficients. It is shown that in the high ion charge
(Z >> 1) limit the electronic M1 model and the Fokker-Planck-Landau equation coincide in
the close-equilibrium case. The electron transport coefficients derived from the electron-electron
collision operator used for the electronic M1 model are compared with the ones obtained using
the electron-electron collision operator for the Fokker-Planck-Landau equation.

The paper is organised as follows: first in Section 2, we introduce the collisional electronic
M1 model. The kinetic Fokker-Planck-Landau equation from which the model is derived is
recalled. Then, the main properties of the collision operators are presented and completed by
the characterisation of the equilibrium state. In Section 3, the electron transport coefficients
are derived using the collisional electronic M1 model and compared with the ones obtained from
the Fokker-Planck-Landau equation. The strategy proposed, based on an expansion on the
Laguerre polynomials [6, 9], is particularly efficient since the stiffness in 1/ζ3 in the electron-ion
collision operator is removed. It is shown that accurate electron plasma transport coefficients
are obtained. Finally, Section 4 presents our conclusions.
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2 Electronic M1 model and collisional operators

This section provides a detailed description of the electronic M1 model [27, 13], which is derived
from the kinetic Fokker-Planck-Landau equation [11].

2.1 Kinetic model

The kinetic Fokker-Planck-Landau equation reads

∂tf(t, ~x,~v) + ~v.∇~xf(t, ~x,~v) +
q

m
~E(t, ~x).∇~vf(t, ~x,~v) = Cee(f, f) + Cei(f) (1)

where f is the electron distribution function, ~E is the electric field, q = −e and m are
the charge and the mass of electron and Cee and Cei are the electron-electron and electron-ion
collision operators. Their expression is given by

Cee(f, f) = αeediv~v

(∫
~v′∈R3

S(~v − ~v′)[∇~vf(~v)f(~v′)− f(~v)∇~vf(~v′)]d~v′
)
, (2)

Cei(f) = αeidiv~v

[
S(~v)∇~vf(~v)

]
, (3)

where

S(~u) =
1

|~u|3
(|~u|2Id− ~u⊗ ~u) (4)

is the Landau tensor and Id is the unit tensor. The parameters αee and αei are positive physical
parameters given by

αee =
e4Λ

8πε20m
2
, αei =

Zn0e
4Λ

8πε20m
2

(5)

where Z is the ion ionisation degree and n0 the ion density which is considered as a known
function of space. The coefficients Λ and ε0 are respectively the Coulombian logarithm and the
vacuum permittivity. The force acting on electron from the magnetic field is not considered in
this paper.

2.2 Collisional electronic M1 model

The electronic M1 model [27, 13] is derived performing an angular moment extraction from the
Fokker-Planck-Landau equation (1). For the sake of clarity, we omit in the following, the ~x and
t dependence of the distribution function. If S2 is the unit sphere, ~Ω = ~v/|~v| represents the
direction of propagation of the particle. By setting ζ = |~v|, the distribution function f writes
in the spherical coordinates in the phase space f(~Ω, ζ). Three first angular moments of the
distribution function are given by

f0(ζ) = ζ2
∫
S2

f(~Ω, ζ)d~Ω, ~f1(ζ) = ζ2
∫
S2

f(~Ω, ζ)~Ωd~Ω, ¯̄f2(ζ) = ζ2
∫
S2

f(~Ω, ζ)~Ω⊗ ~Ωd~Ω. (6)

In [43, 13], the derivation of the transport part of the electronic M1 model is detailed. The
collisional operators studied here are introduced in [27, 28]. In this work, the following collisional
electronic M1 model is considered


∂tf0(ζ) +∇~x.(ζ ~f1(ζ)) +

q

m
∂ζ(~f1(ζ). ~E) = Q0(f0),

∂t ~f1(ζ) +∇~x.(ζ ¯̄f2(ζ)) +
q

m
∂ζ(

¯̄f2(ζ) ~E)− q

mζ
(f0(ζ) ~E − ¯̄f2(ζ) ~E) = ~Q1(~f1) + ~Q0(~f1),

(7)

3



where the collisional operators Q0 and Q1 are given by

Q0(f0) =
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ(

f0
ζ2

)− ζB(ζ)f0

)
, (8)

~Q0(~f1) =
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ(

~f1
ζ2

)− ζB(ζ)~f1

)
, (9)

~Q1(~f1) = −2αei
ζ3

~f1. (10)

The coefficients A(ζ) and B(ζ) write

A(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω2f0(ω)dω, (11)

B(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω3∂ω(

f0(ω)

ω2
)dω. (12)

Next we set,

F0(ζ) =
f0(ζ)

ζ2
, F1(ζ) =

f1(ζ)

ζ2
. (13)

As remarked in [27], inserting expressions (11) and (12) into (8) and (10) gives the following
equivalent expressions for Q0(f0) and ~Q0(~f1)

Q0(f0) = ∂ζ

(
ζ

∫ ∞
0
J(ζ, ζ ′)

[F0(ζ
′)

ζ
∂ζF0(ζ)− F0(ζ)

ζ ′
∂ζ′F0(ζ

′)
]
ζ ′2dζ ′

)
,

~Q0(~f1) = ∂ζ

(
ζ

∫ ∞
0
J(ζ, ζ ′)

[F0(ζ
′)

ζ
∂ζ ~F1(ζ)−

~F1(ζ)

ζ ′
∂ζ′F0(ζ

′)
]
ζ ′2dζ ′

)
,

(14)

with

J(ζ, ζ ′) =
2αee

3
min(

1

ζ3
,

1

ζ ′3
)ζ ′2ζ2. (15)

In this work, both equivalent forms (11)-(12) and (14) are used.

The collisional electronic M1 model (7) is not directly obtained by moment extraction of
the kinetic equation (1). Indeed, the collisional operators (8) and (9) are not directly derived
from the angular integration of (2). The moment extraction of the electron-electron collision
operator (2) is complex because of its non-linearity. In [28], instead of using (2) the following
electron-electron collision operator was proposed

Qee(f) =
1

ζ2
∂ζ

(
ζ

∫ ∞
0
J(ζ, ζ ′)

[F0(ζ
′)

ζ
∂ζf(ζ)− f(ζ)

ζ ′
∂ζ′F0(ζ

′)
]
ζ ′2dζ ′

)
. (16)

This operator satisfies mass and energy conservation properties and an entropy dissipation
property. Also it preserves the realisability domain [28]. The angular integration of this operator
leads to the definitions (14).

The fundamental point of the moments models is the definition of a closure, which writes
the highest moment as a function of the lower ones. This closure relation corresponds to an
approximation of the underlying distribution function, which the moments system is constructed
from. In the M1 model (7), we need to define ¯̄f2 as a function of f0 and ~f1. The closure relation
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originates from an entropy minimisation principle [26, 32]. The underlying distribution function
f is obtained as a solution of the following minimisation problem

min
f≥0
{ H(f) / ∀ζ ∈ R+, ζ2

∫
S2

f(~Ω, ζ)d~Ω = f0(ζ), ζ2
∫
S2

f(~Ω, ζ)~Ωd~Ω = ~f1(ζ) }, (17)

where H(f) is the Boltzmann entropy defined by

H(f) =

∫
S2

(f ln f − f)d~Ω. (18)

The solution of (17) writes [14, 28]

f(~Ω, ζ) = exp( a0(ζ) + ~a1(ζ) . ~Ω ), (19)

where a0(ζ) is a scalar and ~a1(ζ) a real valued vector. An important parameter is the
anisotropy parameter ~α defined with

~α =
~f1
f0
. (20)

Then the moment ¯̄f2 can be calculated [13, 15] as a function of f0 and ~f1

¯̄f2 = f0

(1− χ(~α)

2
¯̄Id +

3χ(~α)− 1

2

~f1

|~f1|
⊗

~f1

|~f1|

)
(21)

where χ(~α) is approximated [13] by

χ(~α) =
1 + ~α2 + ~α4

3
. (22)

The definition (21) enables to close the problem (7). The set of admissible states [13] is
defined by

A =
(

(f0, ~f1) ∈ R× R3, f0 ≥ 0, |~f1| < f0

)
∪ (0, 0). (23)

2.3 Properties of the collisional operators

In this part, we briefly recall important results established in [27, 28], then we characterise the
equilibrium state of the collisional operators (8)-(10) which is given by an isotropic Maxwellian,
similarly to the Landau collision operator. It is pointed out that this property is an important
new result for the model. Firstly, it was demonstated in [27, 28] that the realisability domain
A is conserved by the collisional operators (8)-(10). Secondly, the quantity E = α0f0 + ~α1. ~f1 is
an entropy for the system in the case without electric field. More precisely, from system (7), in
the case without electric field we can derive the following inequality

∂tE +∇~x. ~F ≤ 0, (24)

where ~F is the entropy flux given by ~F = α0
~f1 + ¯̄f2~α1.

Thirdly, the collisional operators (8)-(10) satisfy mass and energy conservation properties.
Here, we complete these results characterising the equilibrium state of the collisional operators
(8)-(10) which corresponds to an isotropic Maxwellian function.
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Theorem 1. The solution (f0, ~f1) of the following system{
Q0(f0) = 0,

~Q0(~f1) + ~Q1(~f1) = ~0,
(25)

is given by f0 = ζ2K1 exp(−K2ζ
2) and ~f1 = ~0 where K1 and K2 are two positive real

constants.

Proof. We first start to prove the following intermediate results∫ +∞

0
α0Q0(f0)dζ +

∫ +∞

0
~α1. ~Q0(~f1)dζ ≤ 0, (26)

and ∫ +∞

0
~α1. ~Q1(f1)dζ ≤ 0. (27)

The definition of ~Q1(~f1) and the fact that ~α1. ~f1 ≥ 0, (see [27]), directly lead to (27). Next,
to prove (26) we use a Green formula in the expression of

∫ +∞
0 α0Q0(f0)dζ to obtain

∫ +∞

0
∂ζ

[
ζ

∫ +∞

0
J(ζ, ζ ′)

(
f0(ζ ′)

ζ ′2
1

ζ
∂ζ(

f0(ζ)

ζ2
)− f0(ζ)

ζ2
1

ζ ′
∂ζ′(

f0(ζ ′)

ζ ′2
)

)
(ζ ′)2 dζ ′

]
α0dζ

= −
∫ +∞

0

∫ +∞

0
J(ζ, ζ ′)

(
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′)

)
∂ζα0

ζ (ζ ′)2 dζdζ ′.

(28)

Next we compute
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′). From (13) and (6), we get the relation

∂ζF
0(ζ) =

∫
S2

∂ζα0(ζ) exp(α0(ζ) + ~α1(ζ).~Ωd~Ω +

∫
S2

~Ω.∂ζ~α1(ζ) exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω. (29)

The expressions of F 0 and ∂ζF
0 give

1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′) =

∫
S2

∫
S2

exp(α0(ζ) + ~α1(ζ).~Ω) exp(α0(ζ
′) + ~α1(ζ

′).~Ω′)(
∂ζα0(ζ)

ζ
+
~Ω

ζ
.∂ζ~α1(ζ)−

∂ζ′α0(ζ
′)

ζ ′
−
~Ω′

ζ ′
.∂ζ′~α1(ζ

′)

)
d~Ωd~Ω′.

Next by setting

K(ζ, ζ ′, ~Ω, ~Ω′) = J(ζ, ζ ′) ζ2ζ ′2 exp(α0(ζ) + ~α1(ζ).~Ω) exp(α0(ζ
′) + ~α1(ζ

′).~Ω′), (30)

δ(ζ) =
∂ζα0(ζ)

ζ
, ~β(ζ) =

∂ζ~α1(ζ)

ζ
. (31)
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and by using equality (30) in (28) we get

−
∫ +∞

0
ζ2
∫ +∞

0
ζ ′2J(ζ, ζ ′)(

1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′))
∂ζα0(ζ)

ζ
dζdζ ′

= −
∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
δ(ζ)− δ(ζ ′

)
)δ(ζ)dζdζ ′d~Ωd~Ω′

+

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

)
δ(ζ)dζdζ ′d~Ωd~Ω′.

The change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) leads to

−
∫ +∞

0
ζ2
∫ +∞

0
ζ ′2J(ζ, ζ ′)(

1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′))
∂ζα0(ζ)

ζ
dζdζ ′

= −1

2

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
δ(ζ)− δ(ζ ′)

)2
dζdζ ′d~Ωd~Ω′

+
1

2

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

) (
δ(ζ)− δ(ζ ′)

)
dζdζ ′d~Ωd~Ω′.

(32)

Next, for the remaining term∫ +∞

0

~Q0(~f1).~α1(ζ)dζ = −
∫ +∞

0
ζ2
∫ +∞

0
J(ζ, ζ ′)(

1

ζ
F 0(ζ ′)∂ζ ~F

1(ζ)− 1

ζ ′
~F 1(ζ)∂ζ′F

0(ζ ′))

.
∂ζ(~α1)

ζ
(ζ ′)2 dζdζ ′ ,

we proceed as previously. The expression of ~F 1 given in (13) leads to

∂ζ ~F
1(ζ) =

∫
S2

~Ω∂ζ exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω +

∫
S2

~Ω2∂ζ~α1(ζ) exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω. (33)

Therefore by using expressions (29) and (33), we get

−
∫ +∞

0

∫ ∞
0

J(ζ, ζ ′) ζ2ζ ′2
(
F 0(ζ ′)

1

ζ
∂ζ ~F

1(ζ)− ~F 1(ζ)
1

ζ ′
∂ζ′F

0(ζ ′)

)
.
∂ζ(~α1)

ζ
dζdζ ′

=

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
δ(ζ)− δ(ζ ′)

)
~Ω.~β(ζ) dζdζ ′d~Ωd~Ω′

+

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~β(ζ ′).~Ω′ − ~β(ζ).~Ω

)
~Ω.~β(ζ) dζdζ ′d~Ωd~Ω′.

Then the change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) gives

−
∫ +∞

0

∫ ∞
0

J(ζ, ζ ′) ζ2ζ ′2
(
F 0(ζ ′)

1

ζ
∂ζ ~F

1(ζ)− ~F 1(ζ)
1

ζ ′
∂ζ′F

0(ζ ′)

)
.
∂ζ(~α1)

ζ
dζdζ ′

=
1

2

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
δ(ζ)− δ(ζ ′)

) (
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

)
dζdζ ′d~Ωd~Ω′

−1

2

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~β(ζ ′).~Ω′ − ~β(ζ).~Ω

)2
dζdζ ′d~Ωd~Ω′. (34)

Finally, we add the right-hand sides of (32) and (34) and by using the inequality

(δ(ζ)− δ(ζ ′))(~β(ζ).~Ω− ~β(ζ ′).~Ω′) ≤ 1

2
((δ(ζ)− δ(ζ ′))2 + (~β(ζ).~Ω− ~β(ζ ′).~Ω′)2), (35)
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we obtain (26).

Next, multiplying the first equation of (25) by α0 and projecting the second on ~α1, adding
the two equalities and integrating over ζ gives∫ +∞

0
α0Q0(f0)dζ +

∫ +∞

0
~α1. ~Q0(~f1)dζ +

∫ +∞

0
~α1. ~Q1(~f1)dζ = 0.

Since, we proved (26) and (27), it comes

~α1. ~Q1(~f1) = 0.

It follows that ~f1 = 0.

Multiplying the first equation of (25) by ln(F0) and integrating over ζ gives

∫ +∞

0
∂ζ(ζ

∫ +∞

0
J(ζ, ζ ′)

[∂ζF0(ζ)

F0(ζ)ζ
−
∂ζ′F0(ζ

′)

F0(ζ ′)ζ ′

]
ζ ′2F0(ζ)F0(ζ

′)dζ ′ ln(F0(ζ))dζ = 0.

By integration by part, it comes

−
∫ +∞

0

∫ +∞

0
K(ζ, ζ ′)

[∂ζF0(ζ)

F0(ζ)ζ
−
∂ζ′F0(ζ

′)

F0(ζ ′)ζ ′

]∂ζF0(ζ)

F0(ζ)ζ
dζ ′dζ = 0.

with K(ζ, ζ ′) = ζ2ζ ′2F0(ζ)F0(ζ
′).

The change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) leads to

−
∫ +∞

0

∫ +∞

0
K(ζ, ζ ′)

[∂ζF0(ζ
′)

F0(ζ ′)ζ ′
−
∂ζF0(ζ)

F0(ζ)ζ

]∂ζ′F0(ζ
′)

F0(ζ ′)ζ ′
dζ ′dζ = 0.

Summing the two previous equations gives∫ +∞

0

∫ +∞

0
K(ζ, ζ ′)

[∂ζF0(ζ
′)

F0(ζ ′)ζ ′
−
∂ζF0(ζ)

F0(ζ)ζ

]2
dζ ′dζ = 0.

It follows that

F0(ζ) = K1 exp(−K2ζ
2), and so f0(ζ) = ζ2K1 exp(−K2ζ

2).

Since the integral of f0 in ζ must be positive and finite, K1 and K2 are positive real constants.

These results demonstrate that the electron-electron collisional operator used for the elec-
tronic M1 model satisfies fundamental properties. In the next section, the derivation of the
plasma transport coefficients using this operator is investigated in the framework of the classical
transport theory.
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3 Derivation of the electronic transport coefficients

3.1 Electron collisional hydrodynamics

It has been shown that the equilibrium state of system (25) is given by an isotropic Maxwellian
distribution function. Therefore, in this analytical derivation we consider a distribution function
close to the equilibrium

f(t, ~x, ζ, ~Ω) = Mf (ζ, Te(t, ~x), ne(t, ~x)) + εF (t, ~x, ζ, ~Ω) (36)

where the Maxwellian distribution function reads

Mf (ζ, Te(t, ~x), ne(t, ~x)) = ne(t, ~x)
( me

2πTe(t, ~x)

)3/2
exp

(
− meζ

2

2Te(t, ~x)

)
(37)

and the Knudsen number ε = λei/L is a small parameter which corresponds to the ratio between
the mean free path λei and the macroscopic scale lenght L. The perturbation F is seeked under
the form

F (t, ~x, ζ, ~Ω) = F0(t, ~x, ζ) + ~F1(t, ~x, ζ).~Ω (38)

According to the Chapman-Enskog approach, the density and temperature macroscopic quan-
tities are defined as

ne(t, ~x) = 4π

∫ +∞

0
f(t, ~x, ζ, ~Ω)ζ2dζ, (39)

Te(t, ~x) =
4πme

3nekB

∫ +∞

0
f(t, ~x, ζ, ~Ω)ζ4dζ. (40)

Therefore the isotropic part of the perturbation verifies the following relations∫ +∞

0
F0(t, ~x, ζ)ζ2dζ = 0 and

∫ +∞

0
F0(t, ~x, ζ)ζ4dζ = 0. (41)

Equation for the density and temperature are following from the integration over ζ of the
electronic M1 model (7) and definitions (39-40)

∂ne
∂t

+∇~x.(ne~ue) = 0,

∂Te
∂t

+ ~ue.∇~x(Te) +
2

3
Te∇~x.(~ue) +

2

3ne
∇~x.(~q) =

2

3ne
~j. ~E

(42)

where we retained only linear terms in the Knudsen number ε. The temporal evolution of ne
and Te in these equations is driven by the fluxes of the particles and energy that are expressed
through the electric current density and the electron heat flux defined by

~j = −ene~ue = −4πeε

3

∫ +∞

0

~F1ζ
3dζ, ~q =

2πmeε

3

∫ +∞

0

~F1ζ
5dζ. (43)

In order to close the hydrodynamic system (42), one needs to express the electric current
and the heat flux (43) in terms of the macroscopic variables ne, Te. More precisely, the term
~F1 should be derived explicitly in terms of the gradients of ne and Te, then definitions (43) give
the electric current and the heat flux. In the quasi-stationary case (∂/∂t << νei) the second
equation of the electronic M1 model (7) reads
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∇~x.(ζ ¯̄f2) +
q

m
∂ζ(

¯̄f2 ~E)− q

mζ
(f0 ~E − ¯̄f2 ~E) = ~Q1(~f1) + ~Q0(~f1). (44)

Using the fact that ¯̄f2 = f0/3
¯̄Id according to equation (38), the previous equation leads to

ζ

3
∇~x(f0)−

e ~E

3me

∂f0
∂ζ

+
2e ~E

3mζ
f0 = ~Q1(~f1) + ~Q0(~f1) (45)

which also rewrites

ζ

3
∇~xf0 −

e ~Eζ2

3me

∂

∂ζ

(f0
ζ2

)
= ~Q1(~f1) + ~Q0(~f1). (46)

Then using in the place of f0 the Maxwellian distribution (37), the previous equation gives

Mfζ
[e ~E∗
Te

+
1

2Te
∇~x(Te)(

meζ
2

Te
− 5)

]
= −2αeiε

ζ3
~F1 +

ε

ζ2
~Q0(ζ

2 ~F1), (47)

with ~E∗ = ~E + (1/ene)∇~x(neTe). In the following we note αei and αee instead of αeiε and
αeeε. In the dimensionless case a parameter 1/ε appears in front of the collisional operators,
therefore considering the development (36), the parameter ε vanishes.

In order to obtain ~F1, one should solve the integro-differential equation (47). The resolution
of this equation is challenging, however it is a linear equation in ~F1 and the form of the left hand
side indicates that the solution is a linear combination of terms proportional to the generalized
forces ~E∗ and ∇(Te)/Te which can be represented as follows

~F1 = ζ
(e ~E∗
Te

φE +∇~x(lnTe)φ
Q
)
Mf (48)

where φE and φQ are defined below. Inserting this expression into (43) one obtains the
following relations [3]

~j = σ ~E∗ + α∇~xTe, (49)

~q = −αTe ~E∗ − χ∇~xTe (50)

where α, σ and χ are called the plasma transport coefficients defined by

σ = −4πe2

3Te

∫ ∞
0

ζ4φEMfdζ, χ =
2π

3

∫ ∞
0

ζ4(5− meζ
2

Te
)φQMfdζ, (51)

α = −4πe

3Te

∫ ∞
0

ζ4φQMfdζ =
2πe

3Te

∫ ∞
0

ζ4(5− meζ
2

Te
)φEMfdζ. (52)

The coefficients α, σ and χ are respectively called the electrical conductivity, the thermo-
electric coefficient and the thermal conductivity. In the case of a homogeneous plasma (with
no density nor temperature gradients) relation (49) simplifies into the Ohm’s law ~j = σ ~E and
equation (50) leads to ~q = −αTe ~E. One can define the heat conductivity coefficient κ, which is
a combination of the other three coefficients

κ = χ− α2Te/σ. (53)

Equation (47) has been established from the collisional electronic M1 model (7). This equa-
tion is identical to the one obtained using the full Fokker-Planck-Landau equation (1), (see [3])
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with the exception of the electron-electron collisional operator. Therefore, the possible differ-
ences in the plasma transport coefficients between the collisional electronic M1 model (7) and the
Fokker-Planck-Landau equation (1) are due to the electron-electron collisional operator. More
precisely, the approximations made to derive the electron-electron collisional operator (8)-(9)
for the electronic M1 model (7) may lead to different plasma transport coefficients. The aim of
the following subsections, is to derive the plasma transport coefficients using the collisional elec-
tronic M1 model (7) and to compare them to the ones obtained using the Fokker-Planck-Landau
equation (1).

3.2 Transport theory in Lorentzian plasma

In the case of a Lorentzian plasma the ions are highly charged therefore one can neglect the
electron-electron collision operator in equation (47). As explained in the previous section, in
this case (Z >> 1), the plasma transport coefficients are the same in the collisional electronic
M1 model (7) and in the Fokker-Planck-Landau equation (1). An explicit expression of ~F1 and
the basic functions φE and φQ are easily derived

~F1 = ζMf

[e ~E∗
Te

(
− ζ3

2αei

)
+∇~x(ln(Te))

ζ3

4αei

(
5− meζ

2

v2Te

)]
, (54)

and

φE = − ζ3

2αei
, φQ =

ζ3

4αei

(
5− meζ

2

v2Te

)
. (55)

Inserting (55) into expressions (51) and (52) gives the transport coefficients for a high Z
plasma [3]

σ0 =
32

3π

e2ne
meνei

, α0 =
16

π

ene
meνei

, χ0 =
200

3π
nevTeλei. (56)

Here the subscript 0 corresponds to the high Z limit. In Figure 1, the electric current and
heat flux are displayed in terms of y = v/vTe using the definition (54).

3.3 Transport theory with electron-electron collisions

In the case of low Z plasmas the calculation presented in the previous section overestimates the
transport coefficients because the electron-electron collision operator is not taken into account.
In this case, one should solve the full equation (47). Spitzer and Härm [41] solved it numerically
in the case of the Fokker-Planck-Landau equation (1). Braginskii [6] derived an approximate
analytical solution by expanding ~F1 onto a series of the Laguerre polynomials following ideas
used in the kinetic theory of neutral gases [9]. In the present work, we apply the latter method
for the case of the electronic M1 model (7). Following (48), using a decomposition of ~f1 with
the two functions φE and φQ in equation (47) reads

1

ζ2
~Q0(ζ

2ζMf
~φA)− 2αei

ζ2
Mf

~φA = ζMf
~SA (57)

where

~SA =
[e ~E∗
Te

SE −∇~x ln(Te)S
Q
]
, (58)
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Figure 1: Representation of the velocity-dependent particle flux, ~jV = −ζ3 ~f1 in red and the
electron energy flux ~qV = me

~f1ζ
5 − 5Te ~f1ζ

3 in green in the case Z >> 1 (Lorentzian approxi-
mation).

with

SE = 1, SQ =
1

2

( ζ2
v2Te
− 5
)
. (59)

Following Chapman [9] and Braginskii [6], we expand ~F1 over the Laguerre polynomials

[2] L
(3/2)
n (x), with x = ζ2/2v2Te . Indeed, the source term in the right hand side of (57) is a

combination of the two first Laguerre polynomials SE = L
3/2
0 (x) and SQ = −L3/2

1 (x). We
represent the basic function φA as

~φA(ζ) =
+∞∑
m=0

~φAmL
(3/2)
m (ζ2/2v2Te), (60)

multiply (57) by ζ3L
(3/2)
n (ζ2/2v2Te) and integrate over ζ. The electron-ion collision term gives∫ +∞

0
−2αei

ζ2
Mf

~φAζ3L(3/2)
n (ζ2/2v2Te)dζ = −2αei

+∞∑
m=0

~φAm

∫ +∞

0
Mfv

2
TeL

(3/2)
m (x)L(3/2)

n (x)dx.

Using the definition (37), it comes∫ +∞

0
−2αei

ζ2
Mf

~φAζ3L(3/2)
n (ζ2/2v2Te)dζ = −2αei

ne

vTe(2π)3/2

+∞∑
m=0

~φAm

∫ +∞

0
L(3/2)
m (x)L(3/2)

n (x)e−xdx.

The computation for the source term reads∫ +∞

0
ζMf

~SAζ3L(3/2)
n

( ζ2

2v2Te

)
dζ =

nev
2
Te

π
√
π

∫ ∞
0

x
√
xe−x

(e ~E∗
Te

+
1

Te
∇~x(Te)(x−

5

2
)
)
L(3/2)
n (x)dx

12



and using the orthogonality of the Laguerre polynomials, the previous equation reads∫ +∞

0
ζMf

~SAζ3L(3/2)
n

( ζ2

2v2Te

)
dζ =

nev
2
Te

π

(3

4

e ~E∗

Te
δ0n −

15

8

1

Te
∇~x(Te)δ1n

)
L(3/2)
n (x)dx.

A similar derivation applies to the electron-electron collision operator∫ +∞

0

1

ζ2
~Q0(ζ

2ζMf
~φA)ζ3L(3/2)

n

( ζ2

2v2Te

)
dζ =

nev
2
Te

π
√
π

+∞∑
m=0

~φAm

∫ +∞

0
L(3/2)
n (x)Q0(x

√
xe−xL(3/2)

m (x))dx.

A direct calculation finally gives the following set of equations

Z−1
+∞∑
m=0

cenm~φ
A
m −

+∞∑
m=0

cinm~φ
A
m = ν−1ei

~SAn . (61)

Here, cenm and cinm are the matrices of the integrals of the electron-electron and electron-ion
collision operators. They are defined by

cinm =

∫ +∞

0
L(3/2)
n (x)L(3/2)

m (x)e−xdx, (62)

cenm =
2(3/2)v3Te
Yee

∫ +∞

0
L(3/2)
n (x)Q0(x

√
xe−xL(3/2)

m (x))dx, (63)

with Yee = Z−1Yei and Yei = (3π/2)νeiv
3
Te

.

The term ~SAn reads

~SAn =
e ~E∗

Te
δ0n −

5

2

1

Te
∇~x(Te)δ1n. (64)

The vector SAn has only two non-zero components. Therefore, only two first expansion
coefficients φA0 and φA1 contribute to the transport coefficients (51)-(52)

σ = −e
2ne
me

φE0 , α = −ene
me

φQ0 =
5

2

ene
me

φE1 , (65)

χ =
5

2
nev

2
Teφ

Q
1 , κ =

5

2
nev

2
Te(φ

Q
1 − φ

Q
0 φ

E
1 /φ

E
0 ). (66)

In the limit Z >> 1, the first term in (61) vanishes and the model simplifies into the case
of a Lorentzian plasma. In this case the first expansion coefficients read φE0 = −32/3πνei,

φE1 = 32/5πνei, φ
E
2 = −32/35πνei, φ

Q
0 = φQ2 = −16/πνei and φQ1 = 80/3πνei.

Multiplying (47) by ζ3 one obtains an equation more suitable for numerical integration. In-
deed, the term 1/ζ3 in the electron-ion collision operator makes the equation (47) very stiff when
ζ becomes close to zero.

The computation of cinm using (62) is straightforward. However, the derivation of cenm
using (63) is more challenging. The coefficients A(ζ) and B(ζ) in (11) and (12) are involved in
the definition of the electron-electron collision operator Q0. Using the variable x = ζ2/2v2Te a
straight calculation gives
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A(x) =
ne

2
√
πx
√
xvTe

[3
√
π√
2

erf(
√
x)− e−x(3

√
2x+ 2

√
2x
√
x)
]

+

√
2

π

ne
vTe

e−x, (67)

B(x) = − 3ne
4
√
πv3Tex

√
x

[√
2π erf(

√
x)− 2

√
2xe−x

]
−
√

2

π

ne
v3Te

e−x, (68)

where erf is the error function. Next, inserting the definition of Q0 (8) and expressions (67)
and (68) into (63) a long but straight calculation leads to the following expression for cenm

cenm =

∫ +∞

0
L(3/2)
n (x)

√
x∂x

((
2 erf(

√
x)− 4

√
x√
π
e−x
)
∂xg(x) (69)

+
(

2 erf(
√
x)− e−x√

π
[4
√
x− 8

3
x
√
x ]
)
g(x)

)
dx

where g(x) =
√
xe−xL

(3/2)
m (x). Using definitions (62) and (69), each component of the ma-

trices cinm and cenm can be computed numerically and the set of equations (61) can be solved.

The accuracy of the solution of (61) increases with the number of coefficients φAn chosen.
The minimum number is two since the first two coefficients φ0 and φ1 contribute to the trans-
port coefficients. Such a two polynomial approximation was considered by Braginskii [6] for
the Fokker-Planck-Landau equation (1). The four-polynomial approximation provides results
beyond the need of experimental plasma physics. Kaneko [22] used 6 Laguerre polynomials
and the high accuracy of transport coefficients he obtained was confirmed in [23] and [24] with
50 Laguerre polynomials. In this work, 6 Laguerre polynomials were used to ensure a high
accuracy of the transport coefficients. The sixth polynomial expansion leads to the following
approximations

φE0 ≈ −ν−1ei
670.4256Z + 4467.7933Z2 + 3306.3497Z3 + 851.0715Z4 + 90.4477Z5 + 3.3952Z6

173.6923 + 2826.2811Z + 3603.5560Z2 + 1604.8485Z3 + 320.2840Z4 + 29.3133Z5 + Z6
,

φQ0 ≈ −
5

2νei

29.3839Z + 1611.9336Z2 + 1595.3372Z3 + 462.0396Z4 + 52.2678Z5 + 2.0373Z6

173.6923 + 2826.2811Z + 3603.5560Z2 + 1604.8485Z3 + 320.2840Z4 + 29.3133Z5 + Z6
,

φE1 ≈ ν−1ei
−86.0931Z + 1177.6149Z2 + 1414.6187Z3 + 437.3817Z4 + 51.1892Z5 + 2.0373Z6

173.6923 + 2826.2811Z + 3603.5560Z2 + 1604.8485Z3 + 320.2840Z4 + 29.3133Z5 + Z6
,

φQ1 ≈
5

2νei

163.9843Z + 2155.5776Z2 + 2263.5819Z3 + 702.4687Z4 + 83.7720Z5 + 3.3950Z6

173.6923 + 2826.2811Z + 3603.5560Z2 + 1604.8485Z3 + 320.2840Z4 + 29.3133Z5 + Z6
.

The velocity-dependent flux functions presented in Fig. 2 show that the electron-electron
contribution decreases as Z increases. We introduce the following dimensionless coefficients
γσ, γα, γχ, γκ defined by

γσ = σ/σ0, γα = α/α0, γχ = χ/χ0, γκ = κ/κ0 (70)

where the index 0 denotes the case of the Lorentzian approximation (Z >> 1). The com-
putation of these coefficients shows that all of them are inferior to 1, that is, the Lorentzian
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approximation (Z >> 1) overestimates the electron transport coefficients for low-Z plasmas.
The coefficients γσ, γα, γχ, γκ are displayed in Figs. 3 and 4 in function of Z for the electron-
electron Landau collision operator Cee given in (4) and for the electron-electron M1 collision
operator (8)-(9) using six Laguerre polynomials.

Figure 2: Representation of the velocity-dependent particle flux, ~jV = −ζ3 ~f1, in the case Z = 1
(blue), Z = 4 (yellow), Z = 16 (green) and Z >> 1 (Lorentzian approximation) in red.

According to Fig. 3, the electron-electron collision operator (8)-(9) used for the electronic M1

model underestimates the thermoelectric coefficient σ. In the large Z limit (Lorentzian approx-
imation), the collisional M1 model and the Fokker-Planck-Landau equation coincide. However,
despite the correct tendency, the curve obtained using the M1 collisional model underestimates
the thermoelectric coefficient σ with a largest error of 43% in the case Z = 1. Also, the two
curves of γα, obtained with the M1 model and the Fokker-Planck-Landau equation, as a function
of Z are very close. In Figure 4, one observes that the curves representing the coefficients γχ
and γκ overlap. The electron-electron collisional operator (8)-(9) recovers the correct χ and κ
plasma transport coefficients.

In conclusion, the electron-electron collisional operator (8)-(9) used for the electronic M1

model recovers the correct χ and κ plasma transport coefficients and is very accurate for the
coefficient α. The main error is made with the coefficient σ with a maximum error of 43% in the
case Z = 1. These results demonstrate the correct behaviour of the electron-electron collision
operator (8)-(9) which can be used for practical applications.
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Figure 3: Representation of γσ (left) and γα (right) as a function of Z for the Landau (red) and
the M1 (green) collision operators using six Laguerre polynomials.

Figure 4: Representation of γχ (left) and γκ (right) as a function of Z for the Landau (red) and
the M1 (green) collision operators using six Laguerre polynomials.

4 Conclusion

In this work, the fundamental properties of the electron-electron and electron-ion collision op-
erators used for the electronic M1 model have been studied. It is shown that their equilibrium
states is given by an isotropic Maxwellian distribution function. In addition, in the Lorentzian
approximation, the electronic M1 model and the Fokker-Planck-Landau equation coincide. The
electron transport coefficients are derived using the electron-electron collision operators proposed
for the electronic M1 model. Despite, the approximations used, accurate plasma transport co-
efficients have been obtained. The correct χ and κ plasma transport coefficients are recovered
and the coefficient α is very close to the one obtained with the Fokker-Planck-Landau equation.
The main error is made with the thermoelectric coefficient σ in the case Z = 1. In spite of
this error, these results show that the electron-electron collision operator is a good candidate
for physical applications. It may be possible to improve this operator in order to obtain a more
accurate σ coefficient. However, since the angular extraction of the kinetic electron-electron
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collision operator is complex, such an issue seems challenging.

References

[1] G.W. Alldredge, C.D. Hauck, and A.L. Tits. High-order entropy-based closures for linear
transport in slab geometry II: A computational study of the optimization problem. SIAM
Journal on Scientific Computing Vol. 34-4 (2012), pp. B361-B391.

[2] M. Abramowitz ans A. Stegun. Handbook of Mathematical functions. Dover Publications
1970.

[3] R. Balescu. Transport Processes in Plasma, Elsevier, (Amsterdam, 1988), Vol. 1.

[4] Yu. A. Berezin, V.N. Khudick, and M.S. Pekker. Conservative finite-difference schemes for
the Fokker-Planck equation not violating the law of increasing entropy. J. Comput. Phy.,
69, 163–174 (1987).

[5] C. Berthon, P. Charrier, and B. Dubroca. An HLLC Scheme to Solve The M1 Model of
Radiative Transfer in Two Space Dimensions. Journal of Scientific Computing, Vol. 31, No.
3, 2007.

[6] S.I. Braginskii. Reviews of Plasma Physics. M.A Leontovich, Ed., Consultants Bureau (New
York, 1965), Vol. 1, p.205.

[7] A.V. Brantov, V.Yu. Bychenkov, O.V. Batishchev, and W.Rozmus. Nonlocal heat wave
propagation due to skin layer plasma heating by short laser pulses. Computer Physics
communications 164 67, 2004.

[8] S. Chapman. Phil. Trans. Roy. Soc. London 216 (1916) 279.

[9] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cam-
bridge University Press, Cambridge, England, 1995.

[10] P. Charrier, B. Dubroca, G. Duffa, and R. Turpault. Multigroup model for radiating flows
during atmospheric hypersonic re-entry. Proceedings of International Workshop on Radi-
ation of High Temperature Gases in Atmospheric Entry, pp. 103–110. Lisbonne, Portugal.
(2003).

[11] F. Chen. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York,
1984.

[12] J.F. Drake, P.K. Kaw, Y.C. Lee, G. Schmidt, C.S. Liu, and M.N. Rosenbluth. Parametric
instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778, 1974.

[13] B. Dubroca, J.-L. Feugeas, and M. Frank. Angular moment model for the Fokker-Planck
equation. European Phys. Journal D, 60, 301, 2010.
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