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Abstract

This work is devoted to the numerical approximation of three-temperature multi-material hy-
drodynamics. Such systems are subject to stiff phenomena which require specific care during the
discretization. In particular, the so-called Discrete Equation Method (DEM) is here applied to
the radiation transport, in the optically-thick limit. This strategy is shown to be accurate in the
presence of in-cell interfaces while being simpler than standard interface reconstruction techniques.
It is then incorporated into a three-temperature multi-material scheme whose implicit temporal
discretization is based on convex combinations. Stiff test cases eventually establish the scheme’s
robustness.

1 Introduction

1.1 Three temperature multi-material hydrodynamics

In applications such as Inertial Confinement Fusion [12] or astrophysics, the materials under scrutiny
are usually plasmas. The behavior of strongly ionized plasmas is characterized by different thermal-
ization time scales. Ions and electrons individually reach thermal equilibrium on characteristic times
much shorter than those necessary for the mixture thermalization. If the hydrodynamic time scale
falls between the two, a two-temperature description of the plasma is necessary; ions and electrons
each have their own temperature but both temperatures need not be equal. Likewise, in the presence
of a strong radiation field, photons need their own description which is here given by the grey diffusion
approximation. Such an approximation is relevant in the optically thick limit if radiation thermaliza-
tion is assumed [35]. The resulting three different temperatures are coupled through collisions between
ions and electrons and between electrons and photons. These couplings can be arbitrarily stiff and the
single-temperature Euler equations are recovered in the case of instantaneous relaxation. Besides, ra-
diation transport accounts for the propagation of photons throughout the domain and can also display
a stiff behavior. Diffusion on the ionic and electronic energies exists as well but are here neglected.

The physical description can be supplemented with an additional multi-material layer. Multi-
material aspects are essential to properly describe complex mixtures with contrasted physical char-
acteristics (e.g. mixtures of gases and solids). The most common approach to derive multi-material
equations is that of conditional averaging procedures [25, 18, 42]. It produces averaged quantities
describing the behavior of the flow, as well as additional correlation terms which encapsulate the
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remaining details. These correlation terms are often neglected as a first approximation as they are
deemed minor, at least outside of shocks. If this approach has proven its efficiency in describing
single-temperature multi-material flows, its application to radiation transport is not trivial. Indeed,
averaged fluxes only express radiation transport separately within each material while the associated
correlation term deals with the coupling between different materials. While radiation transport in
between materials is essential for weakly opaque mixtures of materials, its expression remains unclear
and heavily mixture-dependant. Alternatively, if it is neglected as a first approximation, then different
materials are no longer coupled through temperatures, thus leading to questionable results.

1.2 Numerical strategy

1.2.1 Multi-material radiation transport or diffusion

The discretization of the multi-material radiation transport consists in one of the main contribution
of this work. As explained above, its expression at the continuous level is a difficult task. Still,
its discretization is possible and different strategies exist in the literature. Interface reconstruction
techniques [37, 21, 14] estimate the interface between materials inside mixed cells. Mixed cells are then
separated into pure cells and the diffusion operator is discretized with any single material strategy. At
their best, these techniques allow for a very accurate description of the mixture. However, complex
topology of the flow requires ad hoc strategies [22] and interface reconstruction fails at describing
dispersed phases. The treatment of three or more materials is usually not invariant under permutation
of materials and depends on an arbitrary order [28]. Finally, the computational cost, especially in
three dimensions, can be significant. Alternatively, homogenization methods [13] assume that mixture
of different materials act as a single equivalent material. Such methods are inexpensive but are usually
not considered reliable [27, 13]. Apart from obvious accuracy issues on the fluxes, homogenization
methods are built on the assumption that all materials share the same temperature inside a given cell.
Such hypotheses is not relevant for mixtures of materials with contrasted opacity or for applications
where relaxation of temperatures cannot be considered instantaneous.

Here is presented the so-called Discrete Equation Method (DEM) based on the ideas independently
developed in [2, 7, 6] and latter used in numerous works including but not limited to [3, 38]. Instead
of being dealt with as a local source term and approximated through interface reconstruction or
instantaneous equalization, diffusion between materials takes place at each face, just like diffusion
of a single material. This effectively bypasses the averaging procedure. The method remains both
conceptually and computationally simple while test cases establish significant accuracy improvements
over homogenization methods.

1.2.2 Multi-material hydrodynamics

The numerical strategy for the hydrodynamic part is based on the single material, single tempera-
ture GLACE/EUCCLHYD scheme [5, 32]. The scheme is Lagrangian and can be integrated into an
Arbitrary-Lagrange-Euler (ALE) setting [24, 20]. It will here be coupled with an Alternate Direction
(AD) procedure [41, 19], chosen for both its performance and simplicity.

Generally speaking, two main difficulties arise when starting from a single temperature and single
material scheme and extending it to a three-temperature multi-material one. First, an evolution
equation must be added for the material volumes. Here, the equal strain assumption is made and
consists in saying that volume fractions stay constant during the Lagrangian phase [4]. This closure
is chosen for simplicity although it may become irrelevant for mixture of materials with contrasted
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equations of state [23, 33] (e.g. air and water). Second, first order models with several temperatures
or several materials (and a fortiori with both) are not sufficient to characterize shocks. Indeed, only
partial jump relationships (on individual masses, total momentum, total energy) exist and shocks
are eventually small-scale dependant. The detail of the entropy production (which summarizes the
contribution of the aforementioned correlation terms) is then necessary to fully describe shocks both
at the continuous and at the discrete level.

1.2.3 Time integration of diffusion and relaxation processes

A three-temperature model allows the description of systems which are not at thermal equilibrium.
Although diffusion and relaxation processes are not instantaneous, they are usually stiff and require
an implicit time integration in order to keep decent time steps. Because of the non-linearity, iterative
methods are usually considered. However, enforcing positivity of temperatures both at convergence
and during the different iterations is not trivial and failing to do so can abruptly stop the computation.

The method considered here is a multi-material extension of [9]. The hydrodynamics, the radiation
transport and the source terms are all treated at the same time without any splitting. As pointed out
in [8], doing so allows to better capture the coupling between the different terms in radiation shocks
where temperatures and densities experience large variations over few numerical cells. Contrary to
some approaches in the literature [8, 39], radiation transport and source terms are here fully implicited
(i.e. the implicitation concerns the global terms and not only the temperatures or energies). This
choice arguably offers better robustness with respect to sudden changes in the constitutive laws of
collision frequencies, opacities and diffusion coefficients; the effects of similar changes on the pressure
were studied in [23] where they were referred to as ”stiff stiffness”. The system resulting from the full
time implicitation is however all the more non-linear and harder to solve numerically. The present
strategy is based on convex combinations and ensures that temperatures all stay positive during the
iterative procedure.

The article is organized as follows. In section 2, the three-temperature multi-material equations
are presented. In section 3, the multi-material heat equation is discretized thanks to the DEM. This
equation and strategy serve as a prototype for dealing with the radiation transport in the three-
temperature multi-material equations. In section 4, the numerical approximation of the complete
system of equations is addressed. Robustness in the presence of stiffness is achieved through a specific
temporal discretization based on convex combinations.

2 Three-temperature multi-material equations

2.1 Three-temperature single-material equations

The notations are standard with ρ the density, u the velocity, ei and ee the specific ionic and electronic
internal energies, and er the volumetric radiation energy. Additionally, ions and electrons are described
with an equation of state eθ(1/ρ, sθ), θ ∈ {i, e} where sθ is the species entropy. Pressures and
temperatures are then defined by Gibbs relationship

deθ = −pθd
(
1

ρ

)
+ Tθdsθ. (1)
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Positivity of temperature and density allows to express all quantities as functions of the density ρ
and the internal energy eθ [34]. Likewise, photons have their own pressure, temperature and entropy,
defined by

pr =
er
3
, (2a)

er = aT 4
r , (2b)

d

(
er
ρ

)
= −prd

(
1

ρ

)
+ Trdsr, (2c)

where a is the radiation constant. The three-temperature equations [9] are here written in the La-
grangian formalism which factorizes transport into time derivatives. It lays the foundations for the
“Lagrange + Remap” approach used in section 4.

ρ
d

dt

(
1

ρ

)
= ∇ · u, (3a)

ρ
d

dt
u = −∇p, (3b)

ρ
d

dt
ei = −ρpi

d

dt

(
1

ρ

)
+ cκ (Te − Ti) , (3c)

ρ
d

dt
ee = −ρpe

d

dt

(
1

ρ

)
+ cκ (Ti − Te) + cσP

(
aT 4

r − aT 4
e

)
, (3d)

ρ
d

dt

(
er
ρ

)
= −ρpr

d

dt

(
1

ρ

)
−∇ · Fr + cσP

(
aT 4

e − aT 4
r

)
. (3e)

The different temperatures are coupled through relaxation terms driving the system toward local ther-
mal equilibrium Te = Ti = Tr. The coupling between ions and electrons is given by a relaxation
coefficient κ, while the coupling between electrons and photons is given by Planck’s opacity σP . Both
coefficients are functions of the different temperatures. c is the speed of light. The radiation flux Fr

couples spatially photon temperatures from one place to another, thus driving the system towards an
homogenization state ∇Tr = 0. It is here expressed accordingly to the Rosseland diffusion approxima-
tion [35]

Fr = − c

3σR
∇er (4)

where the Rosseland opacity σR is a function of the electronic temperature Te. Physically, ionic and
electronic transport should also be considered but they are usually weaker and here completely ne-
glected. Thanks to these terms (namely relaxation terms and radiation transport), thermal equilibrium
is not instantaneous but may still be stiff. Equations (3c),(3d), (3e) are deliberately written in a con-
sistent manner with (1), (2c) so that it becomes obvious that the individual entropy productions are
given by the relaxation terms and the diffusion

ρTi
d

dt
si = cκ (Te − Ti) , (5a)

ρTe
d

dt
se = cκ (Ti − Te) + cσP

(
aT 4

r − aT 4
e

)
, (5b)

ρTr
d

dt
sr = ∇ ·

(
c

3σR
∇er

)
+ cσP

(
aT 4

e − aT 4
r

)
. (5c)
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The evolution of the total entropy s = si + se + sr thus reads

ρ
d

dt
s =

1

Tr
∇ ·
(

c

3σR
∇er

)
+ cκ (Ti − Te)

(
1

Te
− 1

Ti

)
+ cσP

(
aT 4

e − aT 4
r

)( 1

Tr
− 1

Te

)
(6a)

= −∇ ·
(
Fr

Tr

)
+

4acTr
3σR

∥∇Tr∥2 + cκ
(Ti − Te)

2

TiTe
+ caσP

(Te − Tr)(T
4
e − T 4

r )

TeTr
. (6b)

Every term in the right hand side is either positive or a flux thus complying with the second principle
of thermodynamics. Finally, the total pressure is p = pi + pe + pr and conservation of total energy is
then given by

ρ
d

dt

(∥u∥2
2

+ ei + ee +
er
ρ

)
= −∇ · (pu+ Fr) . (7)

2.2 Multi-material aspects

An arbitrary number of material is now considered. The general methodology to derive multi-material
equations is based on a conditional averaging procedure introduced in [25] and summarized in [42] for
non-miscible materials and in [23, §B] for general mixtures. The averaging may be spatial, temporal
or statistical. In all cases, averaged quantities and averaged fluxes are defined for all materials but
some residuals (or correlation terms) remain unspecified and are often neglected as a first approxima-
tion. Additionally, the model can be subsequently simplified if materials are assumed to be at local
velocity, pressure or temperature equilibrium. Such hypothesis depend on the characteristic times
of observation. Here, it is assumed that thermal equilibrium is not reached while pressure and ve-
locity equilibrium are sensible approximations [26]. Eventually, the three-temperature single-velocity
multi-material equations read

αkρk
d

dt

(
1

αkρk

)
= ∇ · u, (8a)

ρ
d

dt
u = −∇p, (8b)

αkρk
d

dt
eki = −αkρkpki

d

dt

(
1

ρk

)
+ αkcκk

(
T k
e − T k

i

)
, (8c)

αkρk
d

dt
eke = −αkρkpke

d

dt

(
1

ρk

)
+ αkcκk

(
T k
i − T k

e

)
+ αkcσk

P

(
ekr − a(T k

e )
4
)
, (8d)

αkρk
d

dt

(
ekr
ρk

)
= −αkρkpkr

d

dt

(
1

ρk

)
−∇ ·

(
αkFk

r

)
+ αkcσk

P

(
a(T k

e )
4 − Ek

r

)
. (8e)

The indices k refer to the averaged quantities related to material k. αk is the volume fraction of
material k while ρ is the total density

ρ =
∑
k

αkρk. (9)

Although the averaging process alleviates the treatment of interfaces, certain details of the flow are
lost and, as such, model (8) is underdetermined. Closures need to be provided.

� The first one concerns the evolution of either densities, volume fractions or pressures and ensures
that the number of equations equals the number of unknowns. In keeping with the previous
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considerations on pressure equilibrium, a sound closure would consists in the equality of material
pressures. The numerical treatment of pressure equalization is challenging in the context of a
three-temperature multi-material model with stiff source terms. It is here left out in favor of the
simpler equal strain assumption

αkρk
d

dt

(
1

ρk

)
= αk∇ · u ⇐⇒ d

dt
αk = 0. (10)

This approximation is physically questionable when dealing with highly contrasted mixtures. A
discussion on these two closures is done in [33]. The total pressure then needs to be

p =
∑
k

αk(pki + pke + pkr ). (11)

so as to ensure total energy conservation. The resulting first order system (without diffusion or
source terms) is hyperbolic with eigenvalues −c+ u, u, c+ u where c is the speed of sound of the
mixture

ρc2 =
∑
k

αkρk

(
∂pki
∂ρ

∣∣∣∣
ski

+
∂pke
∂ρ

∣∣∣∣
ske

+
∂pks
∂ρ

∣∣∣∣
sks

)
. (12)

� Even with the right amount of equations, the behavior of the mixture is still not defined inside
shocks. Indeed, multi-temperature multi-material shocks are small-scale dependent which means
that no complete jump relationships can be written without knowing the details of what is
happening inside the shock [26]. Mathematically, this failure comes from the presence of non-
conservative products which prevents any canonical weak formulation from being written [11].
In practice, entropy production on each material and on each species (i.e. ions, electrons and
photons) encapsulates the details of the small-scale effects and entirely determines the shock.

� The averaged radiation flux ∇ · (αkFk
r ) only describes parallel diffusion for each material sepa-

rately. The physically necessary coupling between materials is actually hidden in the previously
neglected correlation terms. Such correlation terms could be modelled as local source terms
coupling temperatures of different materials but their expression would be heavily mixture de-
pendant. One of the main contribution of the present work concerns the discretization of the
multi-material radiation transport and is discussed in section 3.

Concerning the entropy production of the multi-material model, an inequality similar to (6a) can be
derived. However, the expression of the radiation transport in (8e) will not be discretized as it is. It
will be seen that the chosen approach also leads to an entropy inequality at the discrete level, as well
as total energy conservation.

3 Numerical strategies for the multi-material heat equation

In this section, the full three-temperature picture is reduced in order to focus only on the multi-material
aspects of the radiation transport. The prototype is the so-called heat equation

∂tT = ∇ · (κ∇T ) . (13)

The thermal conductivity κ is assumed to depend on the temperature T and the space coordinate
x. The space dependence reflects the multi-material aspects as κ may experience discontinuities in
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the vicinity of the interfaces between different materials. In the following, two methods (namely the
homogenization method and the DEM) are presented for the numerical approximation of (13) in the
context of mixed cells, i.e. cells containing more than one material and thus as many temperatures
and thermal conductivities.

3.1 Homogenization methods: principles and limits

In the case of the so-called homogenization methods [13], mixed cells are assumed to contain a fictive
single material. It is described by only one temperature T c and one thermal conductivity κc which is
an average of the thermal conductivities of the real materials, weighted by their volume fractions.

κc = ϕ−1

(∑
k

αk
cϕ
(
κkc
))

. (14)

The mean is arithmetic for ϕ(x) = x and harmonic for ϕ(x) = 1
x . Other choices are possible as long as

ϕ is strictly monotonic and positive, but they will not be considered in the following. The flux between
cells c and d is then written

Fcd = κc
T cd − T c

hcd
Scd, (15)

where T cd is the temperature at the interface between cells c and d. hcd and Scd are respectively the
distance between the center of ωc and the interface, and the surface of the interface.

Remark 1. Continuity of the temperature at the interface implies Tcd = Tdc. Likewise, geometrical
considerations simply leads to Scd = Sdc. Finally, hcd obeys to no particular symmetry.

Homogenization methods may induce accuracy issues. Indeed, allowing only one temperature
inside each cell is a strong approximation which does not account for mixtures with highly contrasted
thermal conductivity [27] (or opacity for radiation transport). Because diffusion has a regularizing
effect, temperatures are theoretically continuous across interfaces between different materials. However,
steep temperature gradients may exist so that temperatures cannot be numerically considered constant
inside cells close to these interfaces.

These accuracy issues have cascading effects in the context of three-temperature hydrodynamics.
For a given material, electronic, ionic and photon temperatures are coupled through relaxation terms.
These couplings are stiff and may occur on characteristic times smaller than those of diffusion for
opaque materials. Equality of photon temperatures does not comply with this hierarchy and indirectly
produces a non-physical coupling between ionic and electronic temperatures of different materials.
This is critical when considering chemical or nuclear reactions depending on temperature thresholds.
They may be spuriously triggered or turned off leading to physically questionable results.

3.2 DEM-based discretization

The present strategy follows the idea in [6, 7, 2]. Instead of discretizing the averaged equations, the
single material equations are first implicitly discretized before being averaged at the discrete level.
Fluxes between materials now take place at the interface between cells instead of only being dealt
with as local source terms. The method is here described as implicitly resulting from an interface re-
construction where the different geometrical quantities are estimated inexpensively without sacrificing
too much accuracy. An interface reconstruction implies that the averaging procedure is spatial as it
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T 1
c

T 2
c T 2

d

T 1
d

ωc ω1
c ∂ω1

c ∂ω12
cd

Figure 1: Example of two adjacent mixed cells and the corresponding notations for the geometry. The
volume ωc contains the sub-volume ω1

c . Likewise, the surface ∂ω12
cd is includes inside the surface ∂1c .

T 1
c

T 2
c T 2

d

T 1
d

F 11
cd F 11

dc

F
12
cd

F
21
dcF

1
2

cc
F

2
1

cc

Figure 2: Same configuration as in figure 1 with the fluxes.

is explained in [7] with the so-called stratified flow model. Probabilistic averaging can also be taken
as it is done in [2]. All averaging share the same algebraic properties so that the different approaches
result in formally equivalent schemes.

3.2.1 Generic formulation

Considering a mixed cell c and assuming that the position of each material is known (with an interface
reconstruction technique for example), the heat equation may be integrated on each material sub-
volume ωk

c leading to ∫
ωk

c

∂tTdv =

∫
∂ωk

c

(κ∇T ) · nds. (16)

Then dividing the surface ∂ωk
c into sub-surfaces ∂ωkl

cd where material k of cell c is in contact with
material l of cell d (it is not excluded that c = d), equation (16) becomes∫

ωk
c

∂tTdv =
∑
l,d

∫
∂ωkl

cd

(κ∇T ) · nds =
∑
l,d

Fkl
cd. (17)
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T 1
c

T 2
c

T 1
d

T 2
d

T 1
d

T 2
d

T 1
c

T 2
c

T 1
d

T 2
d

T 1
c

T 2
c T 1

d

T 2
d

Figure 3: Examples of the λ0 (left), λmax (center) and λmin (right) cases for given surface fractions.
On each scheme, the center line corresponds to the interface. As an example, the proportion δ12cd is the
ratio of the surface shared by rectangles T 1

c and T 2
d on the total surface of the interface (i.e. 1

6 for λ0,
0 for λmax and 1

3 for λmin).

The sum may be taken over all materials and over all cells by arbitrarily defining Fkl
cd = 0 when both

materials or cells are not in contact. A generic expression of these fluxes is the following

Fkl
cd = κkc

T kl
cd − T k

c

hklcd
Skl
cd, (18)

where the notations are similar to that of the homogenization case, except they now depend on a pair
of materials.

� hklcd is the distance between the center of the sub-cell ωk
c and the interface between material k of

cell c and material l of cell d.

� T kl
cd is the temperature at the interface between the two materials.

� Skl
cd is the area of the interface between the two materials. It is set as a portion δklcd of the entire

surface Scd between the two cells Skl
cd = δklcdScd.

Remark 2. Symmetries detailed in remark 1 are still valid (namely T kl
cd = T lk

dc and Skl
cd = Slk

dc). They
hold because both terms involve the same pair of materials. On the other hand, there is no reason for
T kl
cd to be equal to T lk

cd or T kl
dc (and likewise for S).

Here, no information concerning the geometry of the mixed cell is assumed. In particular, the
position of each material inside the cell and their surface of contact at each interfaces with neighbor
cells is not known. Nevertheless, an approximation of Fkl

cd is still possible. Fluxes between different
cells (i.e. c ̸= d) are treated similarly to [6, 7, 2]. The method is described in the next section 3.2.2.
Internal fluxes (i.e. c = d) are discussed in section 3.2.3.

3.2.2 Computations of the geometry

The distances hklcd are taken as the distance between the center of the cell ωc and the face between cells
c and d. It does not depend on materials k and l and consists in a neutral standing point as, again,
the location of each material inside the cell remains unknown.

Regarding proportions δklcd, the strategy retained is that of [2, 7, 6]. δkcd denotes the total surface
fraction of material k at the interface between cells c and d. The surface fraction may be discontinuous
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so that δkcd ̸= δkdc. Parameters δklcd are then constrained by∑
l

δklcd = δkcd, ∀k (19a)∑
k

δklcd = δldc, ∀l. (19b)

Without any information on the location of each material inside the cell, these surface fractions can
be reasonably approximated by the volume fraction of the associated cell δkcd = αk

c . For the sake of
readability, the following analysis of system (19) is restricted to the case of two materials 1 and 2. The
case of an arbitrary number of materials is discussed in A.

δ11cd + δ12cd = α1
c , (20a)

δ21cd + δ22cd = α2
c , (20b)

δ11cd + δ21cd = α1
d, (20c)

δ12cd + δ22cd = α2
d. (20d)

System (20) consists in four equations and four unknowns. It is not invertible as the last equation is
redundant and can be deduced from the other 3. A general solution is then of the form

δ11cd = α1
cα

1
d + λ, (21a)

δ12cd = α1
cα

2
d − λ, (21b)

δ21cd = α2
cα

1
d − λ, (21c)

δ22cd = α2
cα

2
d + λ, (21d)

where λ is a real-valued degree of freedom. Because surface fractions need to stay in [0, 1], λ is bounded

−min(α1
cα

1
d, α

2
cα

2
d) ≤ λ ≤ min(α1

cα
2
d, α

2
cα

1
d). (22)

In this continuum, three cases (displayed in figure 3) are retained for the rest of the work

� λ = 0 which adds no a priori with the way materials interact with each other. This choice was
already explored in [6]. It will be referred to as λ0 in the following.

� λ = min(α1
cα

2
d, α

2
cα

1
d) for which interactions between the same material are preferred. This

corresponds to the stratified flow model detailed in [7]. In [2], it is associated to separate phase
flows. It will be referred to as λmax.

� λ = −min(α1
cα

1
d, α

2
cα

2
d) which maximizes the surface between pairs of different materials. In [2],

it is associated to dispersed flows. It will be referred to as λmin.

Remark 3. Estimations of distances hklcd or surface fractions δkcd can be honed using additional infor-
mation provided by estimations of volume fraction gradients. This is the usual starting point of an
interface reconstruction [37] although it is possible to extract the information of interest while bypass-
ing the bulk of the procedure. Hence, greater accuracy could be achieved without a significant increase
in computation time. Here, (limited) linear reconstruction of coefficients δkcd will be considered.
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T 1
1 T 1

2 T 2
2 T 2

3

Figure 4: With an anti-diffusive high order technique, the estimation of the volume fraction δ223 can
reach 1 so that the flux between cell 2 and cell 3 concerns material 2. Symmetrically, the volume
fraction δ121 is also 1 so that the flux between cell 1 and cell 2 concerns material 1. Then, both
materials do not interact at all with each other.

3.2.3 Internal flux

Physically, an internal flux should be considered inside mixed cell in order to drive materials toward
temperature equilibrium. Internal fluxes are usually computed through interface reconstructions. Still,
this formulation is not relevant for dispersed phases and does not extend easily to more than two
materials and three dimensions. These issues were already discussed earlier and were the reason why
discretizing the averaged model was first excluded in favor of the DEM. In the previous installments
of the DEM ideas, no internal flux is considered. Such a term is not necessary as materials inside a
given cell still interact indirectly as they are coupled through materials of neighbor cells. Caution still
need to be exercised in two singular cases:

� If λmax is chosen and volume fraction is constant across the entire domain, then the different
materials no longer interact and diffusion occurs in parallel inside each material.

� If surface fractions are estimated with a strongly anti-diffusive limiter (as explained in remark
3), they can be 0 or 1 even if the cell volume fraction is not (see figure 4). In this case, all choices
of λ are equivalent and materials do not interact with each other.

Even if the choice λmax, combined with high order reconstruction techniques, may seem desirable at
first for accurately capturing dispersed phases, they are not compatible with the omission of an internal
flux.

3.3 Conservation and practical computations of the fluxes

Up until now, every fluxes have been expressed in terms of surface temperatures which are yet to be
specified. Conservation of the scheme heavily constrains surface temperatures although some leeway
exists for the DEM.

3.3.1 The case of homogenization methods

For homogenization methods, only one temperature is considered for each cell and each face. Continuity
of the flux holds at the interface between two materials

Fcd = −Fdc. (23)
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(23) also immediately guarantees that the scheme is conservative. Solving for T cd = T dc in equation
(23) eventually yields

Fcd = κcd
T d − T c

hcd + hdc
Scd, (24a)

T cd =

(
κc
hcd

T c +
κd
hdc

T d

)/(
κc
hcd

+
κd
hdc

)
, (24b)

κcd = (hcd + hdc)

/(
hcd
κc

+
hdc
κd

)
. (24c)

3.3.2 The case of the discrete equation method

In the case of DEM, two approaches may be distinguished. First, as in [27], only one temperature is
allowed on each face. Consequently, only one equation is needed to fully define the scheme. A global
conservation is chosen ∑

k

Fkl
cd = −

∑
l

Flk
dc. (25)

Alternatively, one may consider as many temperatures as there are couples of materials interacting at
the face. Because of these new degrees of freedom, conservation for individual fluxes is possible

Fkl
cd = −Flk

dc. (26)

It is the latter choice which is retained. Indeed, having allowed more than one temperature inside the
cell, it seems counterproductive to then only allow one temperature on each face. Just as for (24), (26)
gives

Fkl
cd = κklcd

T l
d − T k

c

hklcd + hlkdc
Skl
cd, (27a)

T kl
cd =

(
κkc
hklcd

T k
c +

κld
hlkdc

T l
d

)/(
κkc
hklcd

+
κld
hlkdc

)
, (27b)

κklcd =
(
hklcd + hlkdc

)/(
hklcd
κkc

+
hlkdc
κld

)
. (27c)

Remark 4. Fluxes may be written in the generic form

F kl
cd = Akl

cd

(
T l
d − T k

c

)
, (28)

with Akl
cd = Alk

dc ≥ 0. This factorized form will be used for the three-temperature multi-material scheme
for best readability.

3.4 Numerical results and comparison of the two methods

The different test cases aim at comparing the performances of the different methods. The numerical
error depends both on the number of cells and the relative position of the mesh with respect to the
physical interfaces. Increasing the mesh size without changing its relative position from the interfaces
amounts to measure the order of convergence of the different methods. The order of convergence is an
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y x

∆y

∆x

Figure 5: Initial mesh (dashed lines) and shifted mesh (full lines). The shift is parameterized by the
lengths x and y. The relative x−shift is given by x

∆x ∈ [0, 1] (and likewise for y).

important feature of numerical schemes but it is somewhat an orthogonal issue to what is investigated
in this work. Besides, no significant difference in the order of convergence is expected; in particular, if
the mesh is perfectly aligned with the interfaces, all methods are equivalent and the order will exactly
be the same.

Here, performance is measured in terms of robustness with respect to changes of volume fraction.
More precisely, the mesh size is fixed and the focus is put on how accuracy deteriorate when the mesh
undergoes arbitrary displacements. For a cartesian mesh, the displacement is here given as a function
of two parameters: the x−shift and the y−shift as depicted in figure 5. The x−shift is the relative
displacement parallel to the x−axis. Two values of x−shift which are equal modulo 1 give the same
mesh so only values in [0, 1] are considered. In particular, the values 0 and 1 induce no change on the
mesh. Same goes for the y−shift.

In all test cases, the different methods are denoted with their own specific key. For homogenization
methods, it is respectively A for the arithmetic mean and H for the harmonic mean. The discrete
equation method’s key is identified with the letter L and is then given in order by: the choice of λ
(0, min or max), the reconstruction of volume fractions (1 constant and 2 for linear) and the use of
internal flux (F if none is used and T otherwise). For instance Lmin2F stands for the DEM with the
choice λmin, linear reconstruction of volume fractions and no internal flux. Finally, time integration is
implicit and not subject to any stability restriction on the time step.

3.4.1 Layered wall

The first test case consists in a wall with multiple layers of two distinct materials. The domain of the
wall [0, 1]× [0, 0.1] is divided into 8 equal parts along the x-axis as shown in figure 6. The first material
of thermal conductivity κ1 = 1 occupies the first, third, fifth and seventh parts; the second material
of thermal conductivity κ2 = 10−2 occupies the rest of the domain. Dirichlet boundary conditions
are set with T = 4 on the left border, and T = 0 on the right. Fluxes are set to zero along the top

13
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Figure 6: Layered wall configuration.
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Figure 7: L2 error as a function of the displacement of the mesh for the layered wall test case. Left:
32× 1 mesh. Right: 160× 1 mesh.

and bottom borders so that the test case is essentially one-dimensional. The layout of the problem is
summarized in figure 6.

The problem is discretized on Nx × 1 meshes with Nx = 32 a Nx = 160. Because in both cases
Nx ≡ 0[8], the unperturbed mesh only consists of pure cells. A non zero x−shift produces mixed
cells whose effect is analysed. Results at t = 5 computed with times steps ∆t = 1 and various values
of x-shift are compared with a reference solution. The reference is computed on a 12 800 × 1 mesh
consisting of only pure cells.

Results are summarized in figure 7. Homogenization methods perform differently depending on the
mean. Arithmetic mean gives the worst accuracy; the error skyrockets even for small displacements
of the mesh. Harmonic mean fares well, even better than the DEM. It can actually be shown that,
for this particular problem, it gives exact global stationary fluxes. As for the DEM, the value of λ
cannot be changed because there is no adjacent mixed cells. Only the linear reconstruction of volume
fractions and the internal flux can be studied. The linear reconstruction seems to significantly improve
the results, except for x−shifts close to 0.5. For small displacements (i.e. with an x−shift or volume
fraction close to 0 or to 1), the linear reconstruction helps mitigate the presence of the material in
minority. However, for balanced mixed cell, it seriously underestimates the flux between the two
materials (as explained in remark 3.2.3). This is the reason why an additional internal flux decreases
the error. However, its effect fades out for a greater number of cells. It becomes less relevant as
the underlying solution is continuous and refining the mesh means that temperature inside mixed cell
converge to one another.
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Figure 8: L2 error as a function of the displacement of the mesh for the sandwich problem. Left: for
all methods. Right: only for the DEM.

3.4.2 Sandwich problem

While the previous test case was interested in fluxes orthogonal to the interface, the so-called sandwich
problem [27] studies fluxes parallel to the interface. The domain [0, 0.5]× [0, 1] is shared between two
materials as depicted in figure 9: the first one, with a thermal conductivity κ1 = 1 occupies the
zone 0.05 ≤ x ≤ 0.45; the rest of the domain contains a material of thermal conductivity κ2 = 0.
Temperature is set to T = 1 at the bottom, and T = 0 at the top. Fluxes are set to zero along the
left and right borders. Because the exterior material does not conduct heat, the solution inside the
interior material is essentially one-dimensional.

The problem is discretized on a 40 × 80 mesh and results are compared with a reference solution
computed on a 500×1000 mesh. Once again, because the number of horizontal cell is a multiple of 10,
the unperturbed meshes consist only of pure cells. The final time is t = 1 with a time step of ∆t = 0.1.

Results are given in figure 8. Homogenized methods give similarly poor results: small displacements
of the mesh induce strong errors for both arithmetic and harmonic means. The DEM gives substantially
better results. Here, no internal flux is considered as the second material does not conduct heat. Linear
reconstruction of volume fractions has almost no effect as it only concerns horizontal fluxes which are
supposed to be zero as the problem is one-dimensional. They are exactly zero for the choice λmax as it
exactly preserves this property of the solution. This also explains why displacements have no effect on
the error with λmax. Errors are greater as λ takes smaller values because it increases the proportion
of the cell faces allocated to non-existing interactions between the two materials.
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3.4.3 Sand and shale

Finally, the more sophisticated sand and shale problem [27] is considered. The domain [0, 1]× [0, 0.5]
is filled with a high conductivity κ1 = 1 medium (the sand) and small squares of a insulating κ2 = 0
material (the shale). The squares are of dimension 0.05×0.05 and are randomly generated throughout
the domain as in figure 9. Temperature is equal to T = 4 at the bottom and T = 0 at the top. Fluxes
are set to zero along the left and right borders.

With a sufficiently fine mesh, this test case locally resembles the sandwich problem. The qualitative
results are expected to be similar, preserving the previously exposed hierarchy of the different methods.
Such a fine mesh can however be out of reach if the structures of interest are especially small. Looking
at the results for coarser meshes is then required. Here a 80× 40 mesh (i.e. 4 cells along each square
side) is used and the results are compared with a reference solution computed on a 1000× 500 mesh.
Once again, the number of cells is chosen so as to ensure that the unperturbed meshes consist only of
pure cells. The final time is t = 1 with a time step of ∆t = 0.1.

Results are given in figure 10 for horizontal, vertical and diagonal displacement of the mesh. Once
again, homogenized method does not fare well, regardless of the chosen mean and the DEM performs
better. Linear reconstruction slightly reduces the error most of the time but the more significant
parameter seems to be the choice of λ. The choice λmin is by far the worst of the three. The choices
λ0 and λmax yield comparable results, λ0 being more robust to horizontal displacements and λmax to
vertical ones. Strikingly, with vertical and diagonal displacements, both give a lower error than for
the pure cell case (i.e. for a relative displacement of 0 or 1) which means that the presence of mixed
cell does actually improve the results.

3.5 Intermediate conclusion

The three previous test cases illustrate the proficiency of the DEM. It fares significantly better than
the homogeneous methods. Concerning the different options and parameters, several comments can
be made.

� Out of the three values of λ, λmin gives the worst results while λ0 and λmax are mostly equivalent
on the sand and shale test case.

� The internal flux may improve the results on coarse meshes (although not automatically) but its
effect eventually disappears on finer ones. It is then arguably reasonable to neglect it all together
and to gloss over the difficulties related to its expression.

� Finally, linear reconstruction of volume fractions improve results most of the time compared to a
constant reconstruction. However, the effect seems to be mostly negligible on sophisticated test
cases.

As such, the choice of λ0 with constant reconstruction of volume fraction and no internal flux (L01F)
is overall a sensible choice. It is the simplest one, gives better results than λmin, avoid the singularities
of λmax or high order reconstructions (as explained in 3.2.3), and its formulation easily extends to an
arbitrary number of materials. This choice will be retained for the test cases of the following section.

16



κ2 κ1

T = 1

T = 0

κ2

κ1

T = 4

T = 0

Figure 9: Sandwich (left) and sand and shale (right) configurations.

4 A cell-centered Lagrangian scheme for three-temperature
multi-material hydrodynamics

A new scheme is now presented for the three-temperature multi-material equations 8. One of the
main building block of this strategy is the approximation of the radiation diffusion with the method
developped in the previous section.

4.1 Space discretization

4.1.1 Hydrodynamics

The hydrodynamics part of the scheme consists in a multi-material extension of the GLACE/EUCCLHYD
schemes [5, 31]. Global quantities (i.e. total Lagrangian volume, momentum and total energy of the
system) are solved with the single-material scheme. The scheme is here written in internal energy
as opposed to the usually preferred total energy. The internal energy formulation lays the necessary
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foundations for a thermodynamically consistent space discretization of the material quantities.

mk
c

d

dt

(
1

(αρ)kc

)
=
∑

p∈P(c)

lpcnpc · up, (29a)

mc
d

dt
uc =

∑
p∈P(c)

Mpc (up − uc) , (29b)

∑
k

mk
c

d

dt
ekc =− pc

∑
p∈P(c)

lpcnpc · up +Qc (29c)

ekc =eki,c + eke,c +
ekr,c
ρkc

, (29d)

Qc =
∑

p∈P(c)

(up − uc) ·Mpc(up − uc), (29e)

up =M−1
p

∑
c∈C(p)

(Mpcup + pclpcnpc) . (29f)

Equation (29a) governs the evolution of the total Lagrangian volume. It is often referred to as the
Geometric Conservation Law [40]. Equation (29b) is the conservation of momentum while (29c) is the
total internal energy equation. Qc corresponds to the total irreversible heat deposit of the scheme;
the matrices Mpc are symmetric positive, thus ensuring Qc ≥ 0 and preventing destruction of entropy.
The expressions (29e) and (29f) also enforces both consistency of the scheme and conservation of total
energy. Details may be found in [15, 32]. The extension to a multi-material setting focuses on the
discretization of individual densities, internal energies and entropies. For the sake of thermodynamical
consistency, they are related to each other through Gibbs identity

d

dt
eki,c = −pki,c

d

dt

(
1

ρkc

)
+ T k

i,c

d

dt
ski,c, (30a)

d

dt
eke,c = −pke,c

d

dt

(
1

ρkc

)
+ T k

e,c

d

dt
ske,c, (30b)

d

dt

(
ekr,c
ρkc

)
= −pkr,c

d

dt

(
1

ρkc

)
+ T k

r,c

d

dt
skr,c, (30c)

in such a way that is compatible with (29c). Densities evolve according to the equal-strain assumption
(10)

mk
c

d

dt

(
1

ρkc

)
= αk

c

∑
p∈P(c)

lpcnpc · up. (31)

It is also equivalent to d
dtα

k
c = 0. As for the entropy, the global heat deposit Q can be shared arbitrarily

between materials and their temperatures with respect to coefficients λkθ , θ ∈ {i, e, r}

mk
cT

k
c

d

dt
skθ,c = λkθ,cQc, (32a)∑

k

∑
θ∈{e,i,r}

λkθ,c = 1. (32b)
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Changing the coefficients λkθ changes the numerical approximation of shocks, even at convergence [29,
1]. Their expression must then be motivated by physics and cannot be reasonably specified by numerical
considerations alone. The coefficients λk = λki +λ

k
e+λ

k
r depend on the mixture (separated, dispersed,...)

and all the underlying small-scale phenomena (viscosity, surface tension, heat exchange,...). Once the
λk are known, they should be divided into λkθ . Strictly speaking, the λkθ can be arbitrary (as long as
they sum up to λk) but they are here defined proportionally to the mass of the different species as
prescribed in [43]

λkθ =
mk

θ

mk
λk. (33)

Then the ions bear almost all of the dissipation and the photons none.

4.1.2 Radiation transport and source terms

Local relaxation terms are approximated with a simple quadrature rule∫
ωc

αkcκk
(
T k
e − T k

i

)
≃ cV k

c κ
k
c

(
T k
e,c − T k

i,c

)
, (34a)∫

ωc

αkcσk
P

(
a
(
T k
r

)4 − a
(
T k
e

)4) ≃ cV k
c σ

k
P,c

(
a
(
T k
r,c

)4 − a
(
T k
e,c

)4)
. (34b)

Each relaxation term appears twice with opposite sign and the discretization of the opposite is the
opposite of the discretization. This is both natural and necessary for energy conservation. Radia-
tion transport is discretized with one of the strategies presented in section 3. The previous thermal
conductivities κ are replaced with local approximations of opacities[

c

3σk
R

]
c

=
c

3σk
R,c

. (35)

In the following, the discrete diffusion operator for material k will be written in the generic form∑
d,l

Akl
cd

(
ekr,c − elr,d

)
, (36)

with Akl
cd ≥ 0 depending on the chosen strategy and the geometry of the mesh. Eventually, the

semi-discrete internal energy equations read

mk
c

d

dt
eki,c =H

k
i,c + cV k

c κ
k
c

(
T k
e,c − T k

i,c

)
, (37a)

mk
c

d

dt
eke,c =H

k
e,c + cV k

c κ
k
c

(
T k
i,c − T k

e,c

)
+ cV k

c σ
k
P,c

(
a
(
T k
r,c

)4 − a
(
T k
e,c

)4)
, (37b)

mk
c

d

dt

ekr,c
ρkc

=Hk
r,c +

∑
d,l

Akl
cd

(
elr,d − ekr,c

)
+ cV k

c σ
k
P,c

(
a
(
T k
e,c

)4 − a
(
T k
r,c

)4)
. (37c)

with Hk
i,c, H

k
e,c and Hk

r,c the, previously detailed, discretization of the hydrodynamic part

Hk
θ,c = −αk

cp
k
θ,c

∑
p∈P(c)

lpcnpc · upc + λkθ,cQc. (38)
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Remark 5. In the present document, diffusion is only considered for radiation temperature. However,
diffusion could also be added on the ionic and electronic temperatures. In this case, the DEM derived
in the previous section can be applied on each diffusion operator. The time implicit integration detailed
in the following only deals with radiation diffusion but a splitting can still be used for the ionic and
electronic ones.

4.2 Implicit time integration: an iterative method based on convex com-
binations

Temperature relaxation processes and radiation transport are usually stiff phenomena. Explicit time
integration of these terms is possible but would require unreasonably small time steps. An implicit
integration is then preferred so that only the hydrodynamics part of the scheme constrains the time
steps.

mk
c

∆t

(
ek,n+1
i,c − ek,ni,c

)
=Hk,n

i,c + c(V κ)k,n+1
c

(
T k,n+1
e,c − T k,n+1

i,c

)
, (39a)

mk
c

∆t

(
ek,n+1
e,c − ek,ne,c

)
=Hk,n

e,c + c(V κ)k,n+1
c

(
T k,n+1
i,c − T k,n+1

e,c

)
+ c(V σP )

k,n+1
c

(
a
(
T k,n+1
r,c

)4 − a
(
T k,n+1
e,c

)4)
, (39b)

mk
c

∆t

(
ek,n+1
r,c

ρk,n+1
c

− ek,nr,c

ρk,nc

)
=Hk,n

r,c +
∑
d,l

Akl,n+1
cd

(
el,n+1
r,d − ek,n+1

r,c

)
+ c(V σP )

k,n+1
c

(
a
(
T k,n+1
e,c

)4 − a
(
T k,n+1
r,c

)4)
, (39c)

with the hydrodynamics part

Hk,n
θ,c = −αk,n

c pk,nθ,c

∑
p∈P(c)

lnpcn
n
pc · un

pc + λk,nθ,c

∑
p∈P(c)

(un
c − un

p ) ·Mn
pc

(
1

2

(
un+1
c + un

c

)
− un

p

)
. (40)

Remark 6. In (40), it is necessary to take the half-sum 1
2 (u

n+1+un) for total energy conservation as
explained in [10]. This is not an implicitation per se as momentum equations are solved before energy
equations.

System (39) is non-linear as energies eki , e
k
e , e

k
r and coefficients κ, σP , σR are possibly non-linear

functions of temperatures. Following [9], it is then solved by an iterative strategy with which positivity
of temperatures is ensured at each step (under some conditions detailed in Proposition 3). The number
of the sub-iteration is indicated by the letter m. First, defining the new variables

ϕkθ = aT k
θ , ∀θ ∈ {i, e, r}, (41a)

βk,n+1,m
θ,c =

ϕk,n+1,m
θ,c − ϕk,nθ,c

ek,n+1,m
θ,c − ek,nθ,c

, ∀θ ∈ {i, e}, (41b)

δk,n+1,m
ie,c =

T k,n+1,m
i,c − T k,n

e,c

ϕk,n+1,m
i,c − ϕk,n+1,m

e,c

, (41c)

21



the linearized equations for the mth iteration are

mk
c

βk,n+1,m
i,c ∆t

(
ϕk,n+1,m+1
i,c − ϕk,ni,c

)
=Hk,n

i,c + c(V κδie)
k,n+1,m
c

(
ϕk,n+1,m+1
e,c − ϕk,n+1,m+1

i,c

)
, (42a)

mk
c

βk,n+1,m
e,c ∆t

(
ϕk,n+1,m+1
e,c − ϕk,ne,c

)
=Hk,n

e,c + c(V κδie)
k,n+1,m
c

(
ϕk,n+1,m+1
i,c − ϕk,n+1,m+1

e,c

)
+ c(V σP )

k,n+1,m
c

(
ϕk,n+1,m+1
r,c − ϕk,n+1,m+1

e,c

)
, (42b)

mk
c

∆t

(
ϕk,n+1,m+1
r,c

ρk,n+1
c

− ϕk,nr,c

ρk,nc

)
=Hk,n

r,c +
∑
d,l

Akl,n+1,m
cd

(
ϕl,n+1,m+1
r,d − ϕk,n+1,m+1

r,c

)
+ c(V σP )

k,n+1,m
c

(
ϕk,n+1,m+1
e,c − ϕk,n+1,m+1

r,c

)
(42c)

Without the diffusion, system (42) would only be a concatenation of 3× 3 linear systems for each cell
and each material. Diffusion couples all these systems both spatially and in between materials so that
a global matrix inversion cannot be avoided. Instead of directly solving (42), the local 3×3 systems are
first analytically triangularized so that the global system now only concerns the radiation temperatures.
This effectively divides by 3 the size of the linear system to be inverted. The triangularization reveals
the following convex combinations

ϕk,n+1,m+1
i,c = hk,n+1,m

c ψk,n+1,m
i,c +

(
1− hk,n+1,m

c

)
ϕk,n+1,m
c , (43a)

ϕk,n+1,m+1
e,c = fk,n+1,m

c

(
ψk,n+1,m
e,c +

(
1− gk,n+1,m

c

)
ψk,n+1,m
i,c

)
+
(
1− fk,n+1,m

c

)
ϕk,n+1,m+1
r,c , (43b)

ϕk,n+1,m+1
r,c

 mk
c

ρk,nc

+∆tc(V σP f)
k,n+1,m
c +

∑
d,l

Akl,n+1,m
cd

−
∑
d,l

Akl,n+1,m
cd ϕl,n+1,m+1

r,d

= mk
cψ

k,n+1,m
r,c +∆tc(V σP f)

k,n+1,m
(
ψk,n+1,m
e,c +

(
1− gk,n+1,m

c

)
ψk,n+1,m
i,c

)
. (43c)

where

hk,n+1,m
c =

1

1 + c(V κδieβi)
k,n+1,m
c

∆t

mk
c

, (44a)

gk,n+1,m
c =

1

1 + c(V κδieβeh)
k,n+1,m
c

∆t

mk
c

, (44b)

fk,n+1,m
c =

1

1 + c(V σPβeg)
∆t

mk
c

, (44c)
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and

ψk,n+1,m
i,c = ϕk,ni,c +

∆tβk,n+1,m
i,c

mk
c

Hk,n
i,c , (45a)

ψk,n+1,m
e,c = ϕk,ne,c +

∆tβk,n+1,m
e,c

mk
c

Hk,n
e,c , (45b)

ψk,n+1,m
r,c =

ϕk,n

ρk,n
+

∆t

mk
c

Hk,n
r,c . (45c)

The numerical time step ∆t is not restricted by the radiation transport or the source terms. It is
only driven by the hydrodynamic part of the equations and its resulting CLF-like condition

∆tcc
Vc

Pc ≤
1

2
. (46)

where Vc is the volume of the cell, Pc its perimeter and cc the mixture speed of sound (12). This restric-
tion is supplemented with a second restriction preventing cell inversion and thus ensuring positivity of
the density.

Remark 7. Strictly speaking, system (43) consists in convex combinations if and only if coefficients

βk,n+1,m
i,c and βk,n+1,m

e,c are non-negative. For a given equation of state, the heat capacity cv and the
Grüneisen coefficient Γ are defined as

cv =
∂e

∂T

∣∣∣∣
ρ

, (47a)

Γ =
ρ

T

∂T

∂ρ

∣∣∣∣
s

. (47b)

The following thermodynamic relation then stands

dT =
1

cv
de+

(
p

cv
− ρΓT

)
d

(
1

ρ

)
. (48)

Equation (48) is in particular valid for the equation of state of ions and electrons of material k. Because

ckv,i > 0 and ckv,e > 0, coefficients βk,n+1,m
i,c and βk,n+1,m

e,c are always positive as long as the variation
of volume is neglected. If not, these coefficients may become negative and convex combinations are
lost. Radiation phenomena usually occurs on time scales shorter than those of hydrodynamics so that
variations of volume can be reasonably neglected.

Remark 8. The convergence rate of the present method is slower than a regular Newton’s method.
Although Newton’s method may fail to ensure positivity of temperatures and may thus crash the
simulation in demanding test cases [9], it usually behaves well. The present method should not be seen
as the main procedure but rather as a backup to another faster-converging method.

4.2.1 Properties

Proposition 1 (Discrete Energy conservation). The discrete total energy

∑
c

[
mc

∥uc∥2
2

+
∑
k

mk
c

(
ek,ni,c + ek,ne,c +

ek,nr,c

ρk,nc

)]
, (49)
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is conserved.

Proof. When summing ionic, electronic and radiation energy, the contribution of relaxation terms
disappears. Radiation transport is written in terms of fluxes which cancel when summed over all cells
and all materials as explained in 3.3. Only remains the hydrodynamics part. Conservation is not
obvious in (29) where the internal energy formulation was favored. Proof of the conservation of total
energy (as well as momentum) for the GLACE/EUCCLHYD scheme can be found in [16, 32, 5, 31].

Proposition 2 (Semi-discrete entropy production). The following semi-discrete inequality on total
entropy stands ∑

c,k

mk
c

d

dt

(
ski,c + ske,c + skr,c

)
≥ 0. (50)

Proof. The semi-discrete entropy equations read

mk
cT

k
i,c

d

dt
ski,c =λ

k
i,cQc + c(V κ)kc

(
T k
e,c − T k

i,c

)
, (51a)

mk
cT

k
e,c

d

dt
ske,c =λ

k
e,cQc + c(V κ)kc

(
T k
i,c − T k

e,c

)
+ c(V σP )

k
c

(
a
(
T k
e,c

)4 − a
(
T k
r,c

)4)
, (51b)

mk
cT

k
r,c

d

dt
skr,c =λ

k
r,cQc +

∑
d,l

Akl
cd

(
elr,d − ekr,c

)
+ c(V σP )

k
c

(
a
(
T k
e,c

)4 − a
(
T k
r,c

)4)
. (51c)

The relaxation terms provide a local and individual (i.e. for a given cell and a given material) entropy
production as it can be seen by summing all equations of (51). Radiation transport, however, consists
in a heat exchange between cells and materials so that the associated entropy production can only be
recovered by summing equations (51c) over all cells and all materials. Eventually

∑
c,k

mk
c

d

dt

(
ski,c + ske,c + skr,c

)
=

∑
k

∑
θ∈{i,e,r}

λkθ,c
T k
θ,c

Qc+
∑

{c,d},{k,l}
Akl

cd

(
T k
r,c − T l

r,d

)((
T k
r,c

)4 − (T l
r,d

)4)
T k
r,cT

l
r,d

+
∑
c,k

c(V κ)kc

(
T k
i,c − T k

e,c

)2
T k
i,cT

k
e,c

+
∑
c,k

ca(V σP )
k
c

(
T k
e,c − T k

r,c

) ((
T k
e,c

)4 − (T k
r,c

)4)
T k
e,cT

k
r,c

, (52)

which is, as announced, non-negative.

Proposition 3 (Positivity of temperatures). Under a hydrodynamics-driven CFL condition and the

positivity of coefficients βk,n+1,m
i,c and βk,n+1,m

e,c , temperatures stay positive at each step of the iterative
procedure.

Proof. If coefficients βk,n+1,m
i,c and βk,n+1,m

e,c are positive, coefficients h, g and f (44) belong to [0, 1].
On the other hand, all ψ (45) variables are positive under a CFL-like condition which only depends
on the hydrodynamics. Then, the right-hand side of equations (43c) is positive. The global matrix
associated to the left-hand side of system (43c) is a M−matrix. Consequently, positivity of radiation
temperatures is ensured. Finally, positivity of electronic and ionic temperatures follows from the
convex combinations (43b) and (43a).

24



4.3 Numerical results

Two test cases are presented in this section. No analytical solution can be given considering the com-
plexity of the equations, the non-linearity of coefficients and the non-uniqueness of shocks. Numerical
results can still be qualitatively compared with the ones presented in [17, 39, 8].

4.4 Ablation wall problem

For this one-dimensional test case [39], a hot gas (xenon) interacts with a denser cold wall (beryllium).
The radiation transport at the interface heats the beryllium and triggers an expansion wave pushing the
interface towards the hot gas. Additionally, the initial pressure discontinuity generates a shock wave
through the gas while the pressure difference induced by the heating of the wall causes a second shock
wave to propagate inside it. The resulting physical setting is extremely stiff because of the high contrast
in densities, pressures, temperatures and opacities. In particular, opacity experiences a sharp change
at the interface (σR/σL ≈ 1012). The domain measures 0.16 cm and is initially divided at x = 0.10 cm
with the wall on the right. Initial quantities are summarized in table 1 along with the values of the
physical constants. In practice, the present three-temperature code is reduced to a two-temperature
one by using infinite κ (1030 for both materials in our test) and taking (cv)i = (cv)e =

1
2cv.

The numerical results are displayed in figure 11 for the Lagrangian simulations and in figure 12
for the Lagrange+Remap (indirect Eulerian) formalism. It is observed that both converge toward
the same solution. However, when comparing these results with the aforementioned references, large
differences in the numerical profiles are observed; here, the diffusion seems frozen. This explains why
the temperature is lower on the right side of the wall; the beryllium experiences an expansion whose
resulting temperature decrease is not compensated by the heat flux from the xenon. Radiation still has
an effect on the left part of the solution where the opacity is quite low; the equilibration of material
and radiation temperatures lags. As stated earlier, opacities σR and σL are extremely different so
taking the harmonic mean in (27c) essentially gives the smaller conductivity of the two. Consequently,
the observed convergence is only that of the pressure-based part of the equation and the diffusion part
has not yet kicked in. Because the flux is proportional to κ/∆x, a small enough mesh spacing ∆x will
eventually trigger diffusion. Such a fine mesh is however not accessible in practice and full convergence
cannot be observed.

A more sensible approach would then be to define the interface opacity so that its effect on coarse
meshes reproduces the small-scale behavior; note that this strategy is akin to the approximation of
non-conservative products where the numerical diffusion is shaped to mimic small-scale dissipation
processes. Alternatively to the harmonic averaging in (27c), arithmetic or geometric means can be
used and the different results are compared in figure 13. All solutions, except for the harmonic mean,
display a similar structure which is consistent with the semi-analytical solution given in [17] and the
numerical results obtained in [39, 8]. However, the previously published results as well as the present
ones all display different wave and interface positions between each other. This is expected as the
intrinsic numerical diffusion of each scheme is different and affects the approximation of shocks as well
as the balance between hydrodynamic and diffusion time scales. How to define the proper interface
opacity is way beyond the aim of this article as it would require an ad hoc approach to carefully
compare these time scales.

Finally, beyond the present numerical strategy, another issue concerns the relevance of the model
itself. The diffusion approximation indeed only makes sense in the optically-thick limit; more sophis-
ticated models (with a full radiation transfer description, encompassing all possible regimes including
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Unit Xenon Beryllium

ρ g.cm−3 0.006 1.85

u cm.s−1 0 0

kBT = kBTr eV 100 1

p g.cm−1.s−2 (γ − 1)ρe

e erg.g−1 cv(kBT )

er erg.cm−3 a(kBTr)
4

σP = σR cm−1 σ0ρ
2(kBT )

−7/2

cv cm2.s−2.eV−1 3.22 · 1011 7.98 · 1011
γ 5/4 5/3

σ0 cm−1 3.1 · 108 4.2 · 109
c cm.s−1 3.00 · 1010
kB eV.K−1 8.61 · 10−5

a erg.cm−3.eV−4 1.37 · 102

Table 1: Initial conditions of the ablation wall problem.

the optically-thin one) and related numerical methods (e.g. multi-scale approaches [30]) would be
required for a more physically accurate description.

4.5 Two-dimensional test case

The last test case comes from [8] and is itself inspired from the one found in [36]. Results can not
be compared directly to these references as the dimensions and equations of state are not specified
in the former one while the latter one does not take into account hydrodynamics. In any case, this
test case aims at demonstrating the proficiency of the present scheme in a two-dimensional setting. A
more quantitative approach is out of the scope of this work. Here two configurations are studied. In
the first one, the three-temperature model is reduced to a two-temperature one by using an infinite
electron-ion relaxation parameter (κ = 1030 in practice) for both materials. In the second one, a small
electron-ion relaxation parameter κ = 0.1 is chosen. For both configurations heat capacities are set to
(cv)i = (cv)e =

1
2cv.

The two materials initially occupy the domain [0, 1]× [0, 1] as in figure 14 with a radial temperature
distribution

T (x, y) = Tr(x, y) =

(
0.001 + 100 exp

(
−x

2 + y2

0.01

)) 1
4

, (53)

a constant density ρ = 1 and a constant velocity u = 0. Both the speed of light c and the radiation
constant a are set to 1. The two materials are two identical perfect gases with Γ1 = Γ2 = 0.4. Their
opacity however differ from each other. They are expressed as

σR = σP =
z

T 3
, (54)

with z = 0.1 for the first material and z = 1 for the second. Symmetric boundary conditions are set
to the left and bottom borders while zero Neumann conditions are set to the top and right borders.
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Figure 11: Results at 4ns of the ablation wall problem (see table 1) for different meshes working in a
Lagrangian formalism and the DEM presented in (27c).
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Figure 12: Results at 4ns of the ablation wall problem (see table 1) for different meshes working in a
Lagrange+Remap formalism and the DEM presented in (27c).
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Figure 13: Results at 4ns of the ablation wall problem (see table 1) for Lagrangian simulations with
1024 cells and different interface averages for the diffusion coefficient.
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Figure 14: Configuration of the two-dimensional two-temperature two-material problem. The dimen-
sions on the y−axis can be recovered from the symmetry with respect to the line x = y.

Results at t = 0.5 for a 128 × 128 mesh are given in figure 15 for the first configuration (infinite
electron-ion relaxation parameter) and in figure 16 for the second one (κ = 0.1). The choice λ0 with
no internal flux and constant reconstruction of volume fraction is made for the radiation transport. The
initial stiff temperature distribution evolves according to two phenomena. First, radiation transport
propagates the centrally concentrated heat to the rest of the domain. Second, at constant density,
temperature gradients induce pressure gradients which accelerate the system radially. The initial
squares are eventually deformed by the acceleration. Neglecting the interaction of the heat front with
the top and right borders, the solution would display a radial symmetry were it not for the difference
in opacity. Indeed, the second material being more opaque, radiation does not propagate well inside.
Its greater opacity also means that material and radiation temperatures are more coupled. As a result,
material 2 radiation temperature is lower than its surroundings. Yet, its material temperature is
actually greater than that of material 1 whose coupling between material and radiation temperature is
weaker. Results with and without remapping share the same global behavior although the remapping
obviously smears the solution at the interface between the two materials.

5 Conclusion

A method for to the discretization of three-temperature multi-material hydrodynamics was presented.
A large focus is put on the multi-material radiation transport which is here dealt with the so-called Dis-
crete Equation Method (DEM). When compared with homogenization methods on perturbed meshes,
the DEM shows significant improvement in accuracy while remaining both conceptually and compu-
tationally simple. The global numerical scheme conserves mass, momentum and total energy. Implicit
time integration allows for stiff relaxation terms and radiation transport without unreasonably small
time steps. The retained strategy also ensures that temperatures stay positive during the iterative
time integration procedure.

Perspectives are numerous; three of them are here mentioned. First, extension to higher order
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Figure 15: Results of the Mousseau-Knoll-Chauveheid test case at t = 1 and for a 128×128 mesh with
an infinite ion-electron relaxation parameter (κ = 1030). Top: without remapping. Bottom: with
remapping.
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Figure 16: Results of the Mousseau-Knoll-Chauveheid test case at t = 1 and for a 128 × 128 mesh
with a small ion-electron relaxation parameter (κ = 0.1). Top: without remapping. Bottom: with
remapping.
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δ31cd δ32cd δ33cd δ3cd

δ21cd δ22cd δ23cd δ2cd

δ11cd δ12cd δ13cd δ1cd

δ1dc δ2dc δ3dc

Figure 17: Matrix of variables for N = 3.

is desirable for better accuracy as the present scheme is only at first order both in time and space.
Anti-diffusive methods could be used to prevent over-smearing of the interface when the scheme is
paired with a remapping procedure. Second, the methodology of comparison with perturbed meshes
could be extended and bettered for more general meshes (with random displacements for instance).
Finally, even though the scheme is written for an arbitrary number of materials, it remains to check
its efficiency for more than two materials.

A Interface area proportions: extension to more than two ma-
terials

This section extends the analysis exposed in section 3.2.2 for system (19) (rewritten below) when
dealing with an arbitrary number N of materials.∑

l

δklcd = δkcd, ∀k (55a)∑
k

δklcd = δldc, ∀l. (55b)

The set of unknowns may be gathered on the N × N array where the (k, l) − th entry is δklcd. Then,
equations (55a) constrain the sum of rows and (55b) the sum of columns. in Figure 17 is displayed the
matrix for N = 3. The array form of the equations substantially eases the analysis. It may be seen
that a necessary and sufficient condition for (55) to have a solution is∑

k

δkcd =
∑
l

δldc, (56)

which is trivially satisfied because both sides of the equation are equal to one. In terms of linear
algebra, it means that the Image of the linear mapping related to (55) is the hyperplane defined by
(56). The rank (i.e. the dimension of the Image) is then 2N − 1. By the rank-nullity theorem, the
Kernel is then of dimension N2 − (2N − 1) = (N − 1)2 which corresponds to the number of degrees of
freedom on the solution. It is not surprising as setting the value of a (N − 1)× (N − 1) sub-array of
the variable array is enough to fill up the rest with the conditions on the sum of the lines and columns.
In the case N = 2, there is only (N − 1)2 = 1 degree of freedom which corresponds to λ in (21). The
three cases λ0, λmax and λmin do not all extend well to an arbitrary number of materials.
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� An natural equivalent of λ0 is given by

δklcd = δkcdδ
l
dc. (57)

� The case λmax consists in maximizing diagonals element in the variable matrix. A possible
extension is

δkkcd = min(δkcd, δ
k
dc), (58a)

δklcd =
(δkcd − δkkcd )(δ

l
dc − δllcd)∑

k(δ
k
cd − δkkcd )

, (58b)

where (58a) corresponds to the maximum value diagonal elements can take. The rest of surface
proportions are arbitrarily given by (58b), although other choices are still possible because of
the great number of degrees of freedom.

� The case λmin has no natural extension. Applying λmin to every couple of materials is possible
but heavily depends on the order with which couples are taken.
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