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Abstract. Angular moments models based on a minimum entropy problem
have been largely used to describe the transport of photons [15] or charged
particles [20]. In this communication the M1 and M2 angular moments mod-
els are presented for rarefied gas dynamics applications. After introducing
the models studied, numerical simulations carried out in various collisional
regimes are presented and illustrate the interest in considering angular mo-
ments models for rarefied gas dynamics applications. For each numerical
test cases, the differences observed between the angular moments models
and the well-known Navier-Stokes equations are discussed and compared
with reference kinetic solutions.
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1 Introduction

While kinetic descriptions can be considered to describe accurately the trans-
port of particles in rarefied gas dynamics [16] they are also known to be
computationally expensive. In order to keep relatively low computational
cost, a possible solution consists in working with reduced descriptions which
describe the temporal evolution of macroscopic physical quantities. Unfor-
tunately, standard velocity moments models are often not satisfactory since
they can be particularly inaccurate. Indeed the particles studied may have a
probability distribution function far from the Maxwellian equilibrium distri-
bution so that traditional reduced descriptions become useless. One under-
stands here the difficulty in capturing kinetic effects using reduced kinetic
codes operating on fluid time scales [14, 23].

Angular moments models represent alternative methods between the ki-
netic and the macroscopic models (velocity moments models). Indeed, they
require computational times shorter than kinetic models and provide results
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with a higher accuracy than most of standard fluid models. While velocity
moments models are obtained by integrating in velocity the kinetic equa-
tions (against weight functions), angular moments models only consider an
angular integration (integration on the unit sphere). Basically, the main
idea is to keep the velocity modulus (denoted ζ in this work) as a (kinetic)
variable (such as space and time). This simple idea leads to the derivation
of an hierarchy of angular moments equations and set the angular moments
models as natural candidates to study far equilibrium regimes at a relatively
low numerical cost.

Similarly to velocity moments models, angular moments models requires
a closure relation. Over the years various closures have been investigated.
In this document, angular moments models based on a minimum entropy
problem are considered [9]. This kind of closure have been widely studied
in [34, 27, 32, 33, 38, 1, 29, 41, 30]. The resolution of this closure problem
leads to consider an underlying distribution function under the form of an
exponential of a polynomial (of the weight functions considered). Therefore
this underlying distribution function is non negative. Such a closure relation
also gives fundamental mathematical properties [27, 37, 25] to the resulting
moments models such as hyperbolicity and entropy dissipation. However,
their solutions could be rather different from the solution of the kinetic
equation.

The idea to perform an angular integration has been largely used in the
context of radiative transfer [43, 2, 10, 42, 7, 35, 36] and is currently extend-
ing to other fields, such as plasma physics [9, 20, 21, 19] or radiotherapy
applications [12, 40]. Here, the dynamics of neutral particles in dilute gas is
investigated.

The present study is original for two main reasons. First of all, very
few works considers the use of angular moments models (not velocity mo-
ments models) based on a minimum entropy closure applied to rarefied gas
dynamics. To our knowledge there is only the work proposed in [18] and
the differences with the present communication will be explained. Secondly,
clear numerical comparisons with Navier-Stokes and reference kinetic solu-
tions are presented in various collisional regimes. This study is different with
all the works involving a minimum entropy closure since only an angular in-
tegration is performed. In addition, the work proposed in [18] is a first step
towards the modeling and simulation involving two distinct species of par-
ticle (heavy and light particles for example). This explain why a framework
centered on the particles mean velocity was considered. Unfortunately, this
choice brings many difficulties at the discrete level to enforce the zero mean
velocity or the admissibility of the numerical solutions. Here, the situation is
different since we stay in the laboratory framework and compare the results
with other well-known models.

In the present work, we wish to keep the models derivation particularly
simple in order to present clear numerical comparisons. For this reason, we
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do not mention the great difficulties encountered with a rigorous derivation
of boundary conditions or admissible conditions. These aspects are chal-
lenging and out of the scope of the present study, here, we simply refer to
existing results. The present communication is organized as follow. First
of all, starting from a kinetic equation, the derivation of the M1 and M2

angular moments models is explained. The Navier-Stokes equations are also
briefly recalled. Secondly, numerical simulations carried out in various colli-
sional regimes are presented and illustrate the interest in considering angular
moments models for rarefied gas dynamics applications. For each numerical
test cases, the differences observed between the angular moments models
and the well-known Navier-Stokes equations are discussed and compared
with reference kinetic solutions.

2 Governing equations

We start by presenting the derivation of the angular moments models con-
sidered in this communication, namely the M1 and M2 angular moments
model. Standard kinetic and Navier-Stokes equations are also briefly re-
called in order to perform clear numerical comparisons.

2.1 M1 angular moments model

The M1 angular moments model can be easily derived starting from the
kinetic equation

∂tf(t, x, v) + v.∇x (f(t, x, v)) = C(f)(t, x, v). (1)

Because of the complexity of the Boltzmann collisional operator, in this
study, a simplified collisional operator is considered. More precisely this
communication is carried out working with a standard BGK collision oper-
ator [17]

C(f)(t, x, v) = ν(t, x) (Mf (t, x, v)− f(t, x, v)) , (2)

where Mf is the equilibrium Maxwellian distribution function

Mf (t, v, x) = n(t, x)

(
m

2πkbT (t, x)

) 3
2

exp

(
−m(v − u(t, x))2

2kbT (t, x)

)
, (3)

n the particles density, u the mean velocity, T the temperature and ν is
a collisional frequency which will be specified. Expanding the velocity v
as v = ζΩ (spherical coordinates), where ζ is the velocity modulus and Ω
the velocity direction, the direct angular integration of the kinetic equation
(1) against the weight function 1 and Ω leads to the following set of two
equations {

∂tf0 +∇.(ζf1) = ν(M0 − f0),
∂tf1 +∇.(ζf2) = ν(M1 − f1),

(4)
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where f0, f1 and f2 are the first three angular moments of the particles
distribution function defined by

f0(ζ) = ζ2
∫
S2

f(Ω, ζ)dΩ, f1(ζ) = ζ2
∫
S2

f(Ω, ζ)ΩdΩ,

f2(ζ) = ζ2
∫
S2

f(Ω, ζ)Ω⊗ ΩdΩ.

It is important to notice that we keep the velocity modulus ζ as a variable
(as the time t and space x). So, in practice, we are going to work with a
grid for the velocity modulus. The terms M0 and M1 in the collisional part
are obtained by angular integration of the collision operator (2)

M0(t, x, ζ) = ζ2
∫
S2

Mf (t, x, v)dΩ, M1(t, x, ζ) = ζ2
∫
S2

Mf (t, x, v)ΩdΩ.

Analytic expressions of M0 and M1 can be computed in terms of the velocity
moments (macroscopic quantities) and one obtains

M0 = n
ζ

u

√
m

2πkbT

(
exp(

2mζu

kbT
)− 1

)
exp

(
− m(ζ2 + u2)

2kbT

)
,

M1 = n

√
m

2πkbT

(kbT
m

+ζu+exp

(
2mζu

kbT

))( ζ
u
− kbT
mu2

)
exp

(
−m(ζ2 + u2)

2kbT

)
.

Remark: One notices the division by the mean velocity u in the two pre-
vious equations. However we point out that the limit u tends to zero is not
singular. Indeed, direct Taylor expansions give a finite value of M0 and M1

in the limit u tends to zero. In practice, these expansions are used to get
rid of numerical issues encountered with small values of u.

Now, in order to close model (4), one needs to define the higher order
moments f2 as a function of f0 and f1. In the present work, following [27, 32,
10], the closure relation considered originates from an entropy minimization
principle. The underlying distribution function f is obtained as a solution
of the following minimization problem

min
f≥0

{
H(f) / ζ2

∫
S2

f(Ω, ζ)dΩ = f0(ζ), ζ2
∫
S2

f(Ω, ζ)ΩdΩ = f1(ζ)

}
,

(5)
where H(f) is the angular entropy defined by

H(f) = ζ2
∫
S2

(f ln f − f)dΩ. (6)

The solution of (5) writes [11, 28]

f(Ω, ζ) = exp (a0(ζ) + a1(ζ) .Ω) , (7)
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where a0(ζ) is a scalar and a1(ζ) a real valued vector. Note that this clo-
sure function is an exponential because of the chosen entropy (similar to
the Boltzmann entropy) (6). Once the form of the probability distribution
function fixed the higher order moment f2 can be computed as a function
of f0 and f1 (see [9, 11])

f2 =

(
1− χM1(x)

2
¯̄Id+

3χM1(x)− 1

2

f1
|f1|
⊗ f1
|f1|

)
f0, (8)

with
χM1(x) = (1 + x2 + x4)/3, x = f1/f0.

We define here the set of admissible states

A =
(

(f0, f1) ∈ R× R3, f0 ≥ 0, |f1| ≤ f0
)
,

which gives the existence of a non-negative distribution function from the
angular moments under consideration (see [34]). In the following, the col-
lisional operator is computed implicitly because of the stiffness due to the
collisional frequency ν (indeed we are going to perform simulations in all
collisional regimes). For this purpose, following [4], we numerically solve
the conservation laws associated to (4) before computing the collision oper-
ator term implicitly. The conservation laws in term of the angular moments
write 

∂tn+∇. (nu) = 0,

∂t(nu) +∇.
(∫ +∞

0
f2ζ

2dζ

)
= 0,

∂tE +∇.
(∫ +∞

0

m

2
f1ζ

3dζ

)
= 0,

(9)

where the particles density, the mean velocity, the total particles energy
write in terms of the angular moments as follow

n(t, x) =

∫
R3

f(t, x, v)dv =

∫ +∞

0
f0(t, x, ζ)dζ,

u(t, x) =
1

n(t, x)

∫
R3

f(t, x, v)vdv =
1

n(t, x)

∫ +∞

0
f1(t, x, ζ)ζdζ,

E(t, x) =
m

2

∫
R3

f(t, x, v)v2dv =
m

2

∫ +∞

0
f0(t, x, ζ)ζ2dζ.

Before introducing the M2 angular moments model we highlight the fact
that the rigorous derivation of boundary conditions when working with mo-
ments models is a sensitive aspect and can be very challenging. This topic is
clearly out the scope of the present study and we refer to [39, 24] where an
analysis on this subject can be found. We believe it could also be applied in
this context. In the following, for the numerical tests presented, the compu-
tational domain is chosen sufficiently large in order to avoid any numerical
artifact due to some boundary interactions.
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2.2 M2 angular moments model

In this section the next order angular moments model named the M2 angular
is presented. This angular moments model reads

∂tf0 +∇.(ζf1) = ν(M0 − f0),
∂tf1 +∇.(ζf2) = ν(M1 − f1),
∂tf2 +∇.(ζf3) = ν(M2 − f2),

where f3 is now the highest order angular moments defined by

f3(ζ) = ζ2
∫
S2

f(Ω, ζ)Ω⊗ Ω⊗ Ω dΩ.

As previously, the second order angular moments of the Maxwellian distri-
bution function (3) can be computed numerically

M2 = n exp

(
−m(ζ2 + u2)

2kbT

)
exp

(
2mζu

kbT

)
(
ζ2u2 − 2ζukbT/m+ 2k2bT

2/m2
)
− ζ2u2 − 2ζukbT/m− 2k2bT

2/m2√
2πkbT/mζu3

.

Now using the minimum entropy principle as for the M1 model, f3 can be
expressed as a function of f0, f1 and f2. The derivation of the M2 entropic
closure and its associated admissibility conditions is a challenging issue far
beyond the scope of the present study. Here we refer to [40] and [8] in which
these two aspects have been addressed. In appendix, the M1 and M2 closure
relations are given in the 1D case.

2.3 Navier-Stokes equations

Since numerical comparisons with the Navier-Stokes equations are presented
in the following section, these equations are recalled in order to fix the
notations. Well-known Navier-Stokes equations can be derived starting from
the kinetic equation (1) introducing a fluid scaling and a standard Chapman-
Enskog procedure [6, 5, 13]. In that case the particles distribution function
under the Chapmann-Enskog ansatz writes

f = Mf + εg,

∫
g

 1
v
v2

 dv = 0, (10)

where Mf is the Maxwellian equilibrium given in (2), ε is called the Knudsen
number and g the equilibrium deviation. For clarity, we do not detail the
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Chapman-Enskog procedure [6, 5, 13] and directly gives the resulting model
with its closure relations

∂t(mn) +∇. (mnu) = 0,

∂t(mnu) +∇. (mnu⊗ u+ Σ(f)) = 0,

∂tE +∇. ((E + Σ(f))u+ q(f)) = 0,

(11)

where the stress tensor is defined by

Σ(f) = m

∫
R3

f(t, x, v)(v − u)⊗ (v − u)dv,

and the heat flux by

q(f) =
m

2

∫
R3

f(t, x, v)(v − u)2(v − u)dv.

Now using the ansatz (10), the Chapman-Enskog procedure gives the Navier-
Stokes closure relations

Σ(f) = Σ(Mf ) + εΣ(g), q(f) = q(Mf ) + εq(g),

where
Σ(Mf ) = pId, q(Mf ) = 0,

and the higher order terms

Σ(g) = −µ
(
∇u+ (∇u)t − 2

3
(∇.u)Id

)
, q(g) = −κ∇T.

In addition, following the Chapmann-Enskog theory applied to a BGK
model, the transport coefficients µ and κ are fixed in order to fit with the
BGK model (2) (even if it is well known that a wrong Prandt number is
recovered by the BGK model [17]) and write

µ =
p

ν
, κ =

5pR

2ν
.

2.4 Numerical strategy

The HLL numerical scheme [22] is considered for the angular moments mod-
els and the Navier-Stokes equations. The HLL scheme considered here is
one the simplest approximate Riemann solver (one intermediate state with
two wave velocities to be defined). The intermediate state is set so that
this approximate Riemann solver is consistent with the integral form of
associated set of equations (Harten, Lax and Van Leer formalism). This
numerical scheme is used extensively because of its strong stability prop-
erties (preservation of the admissible states and discrete entropy inequality
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[3]). As already mentioned, implicit time discretisations are used for the
collisional terms. Therefore when working with the M1 and M2 moments
models, we start by solving the conservation equations to access to the
updated macroscopic quantities, then the collisional operators are shaped
and the new moments are finally computed. In order to perform rigorous
numerical comparisons, second-order accuracy enhancements based on stan-
dard second-order Van Leers slope limiter [26] methods are used. This leads
to a significant improvement of the numerical solutions which is mandatory
since converged numerical results are required in order to perform fair model
comparisons.

3 Numerical test cases

In this section, numerical simulations carried out in different collisional
regimes are presented. For each numerical test case, the differences observed
between the angular moments models and the Navier-Stokes equations are
discussed and compared with reference BGK kinetic solutions.

3.1 A regular test case

The first numerical experiment considers the relaxation process of an hot
spot in different collisional regimes. The initial probability distribution func-
tion writes

f ini(x, v) =

(
m

2πkbT ini(x)

) 3
2

exp

(
− mv2

2kbT ini(x)

)
,

where
T ini(x) = 1− exp

(
−x2/(2L)

)
,

and L = 40. The space domain is [−L,L]. The velocity grid used for the
kinetic reference is [−8, 8]3 with 64 cells for each grid while the velocity
modulus used for the angular moments model is [0, 8] with 32 cells. For all
models, the space cells number is 400.

a. Fluid regime
On Figure 1, the density (top left), speed (top right), temperature (bottom
left) and heat flux (bottom right) profiles are displayed at time t = 15 in
the case τ = 1/ν = 0. It is observed that the four models give exactly the
same solution. This was expected since all the models are able to capture
Maxwellian equilibrium distributions (fluid regimes). This validates the im-
plementation and the accuracy of the numerical strategy chosen. This also
shows that accurate and fair comparisons are feasible.
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b. Close fluid and rarefied regimes
On Figure 2, density (top left), speed (top right), temperature (bottom left)
and heat flux (bottom right) profiles are displayed at time t = 5 in the case
τ = 1/ν = 1. It is observed that the results produced by the M1 model (in
green) are very slightly different to the ones given by the other models which
remain close. On Figure 3, the profiles are displayed at time t = 5 in the case
τ = 1/ν = 100 (rarefied regime). It is observed that the Navier-Stokes pro-
files dropped completely compared to the moments models and the kinetic
reference. In this regime one remarks that the M1 and M2 moments models
are much more accurate than the Navier-Stokes equations. The angular M1

gives reasonably good results while the M2 moments model is very accurate
and remains very close to the kinetic reference solutions.

c. Very rarefied regime
On Figure 4, density (top left), speed (top right), temperature (bottom left)
and heat flux (bottom right) profiles are displayed at time t = 5 in the
case τ = 1/ν = 104. In this very rarefied regime, it is observed that the
Navier-equations profiles are completely wrong (completely diffused). The
M1 results are still acceptable while the M2 moments model remains very
accurate.

3.2 Discontinuous test case: Riemann problem

We now consider a Riemann problem in different collisional regimes. The
initial probability distribution function is the following

f ini(x, v) = nini(x)

(
m

2πkbT ini(x)

) 3
2

exp

(
− mv2

2kbT ini(x)

)
,

where

nini(x) =

{
1.0 if x < 0,

0.125 if x > 0,

and

T ini(x) =

{
1.0 if x < 0,

0.8 if x > 0.

The space domain is [0, 1]. The velocity grid used for the kinetic reference
is [−8, 8]3 with 64 cells for each grid while the velocity modulus used for the
angular moments model is [0, 8] with 32 cells. For all models, the space cells
number is 400.

a. Fluid regime
On Figure 5, the density (top left), speed (top right), temperature (bottom
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Figure 1: Density (top left), speed (top right), temperature (bottom left),
heat flux (bottom right) profiles in the case τ = 1/ν = 0 (fluid regime) at
time t = 15.

left) and heat flux (bottom right) profiles are displayed at time t = 0.25 in
the case τ = 1/ν = 0 (fluid regime). It is observed that the four models give
exactly the same solution. As with the previous test case, this was expected
since all the models capture Maxwellian equilibrium distributions.

b. Intermediate regimes
On Figure 6, density (top left), speed (top right), temperature (bottom left)
and heat flux (bottom right) profiles are displayed at time t = 0.1 in the
case τ = 1/ν = 10−2. As observed with the previous test case, it is observed
that the results produced by the M1 model are slightly different to the ones
given by the other models which remain close. On Figure 7, the profiles are
displayed at time t = 0.1 in the case τ = 1/ν = 10−1 (so that the collisional
frequency is decreased very slowly). It is observed that the Navier-Stokes
profiles have started to drop. At this intermediate collisional level it is hard
to decide which model between the M1 and the Navier-Stokes is the best.
It is also observed that the M2 results are not perfect (small differences are
observed with the kinetic) but still remains very accurate compared to M1
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Figure 2: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 1
(close fluid regime) at time t = 5.

and Navier-Stokes.

c. Intermediate-rarefied regimes
On Figure 8, density (top left), speed (top right), temperature (bottom left)
and heat flux (bottom right) profiles are displayed at time t = 0.1 in the
case τ = 1/ν = 1 (still intermediate collisional regimes). Even if the fluid
is not really in a rarefied regime, it is observed that the Navier-equations
profiles are completely wrong. Here, the M1 results are much more accurate
and the M2 results are very good (but not perfect). We do not push the
numerical tests into more rarefied regimes since the Navier-Stokes gets even
worse while the angular moments keep the same level of accuracy.

3.3 Discontinuous test case: double shock wave problem

We now focus on shock waves profiles in different collisional regimes with
a special focus on the heat flux profiles. The fluid velocity is initialized so
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Figure 3: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 100
(rarefied regime) at time t = 5.

that two shock waves are created and propagate in opposite directions. The
initial probability distribution function is the following

f ini(x, v) = nini(x)

(
m

2πkbT ini(x)

) 3
2

exp

(
−m(v − uini)2

2kbT ini(x)

)
,

where

nini(x) =

{
1.0 if x < 0,

1.0 if x > 0,

uini(x) =

{
1.0 if x < 0,

− 1.0 if x > 0,

and

T ini(x) =

{
1.0 if x < 0,

1.0 if x > 0.
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Figure 4: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 104

(strongly rarefied regime) at time t = 5.

The space domain is [0, 1]. The velocity grid used for the kinetic reference
is [−8, 8]3 with 64 cells for each grid while the velocity modulus used for the
angular moments model is [0, 8] with 32 cells. For all models, the space cells
number is 400.

a. Fluid regime
On Figure 9, the density (top left), speed (top right), temperature (bottom
left) and heat flux (bottom right) profiles are displayed at time t = 0.2 in
the case τ = 1/ν = 0 (fluid regime). It is observed that the four models give
exactly the same solution. As with the previous test case, this was expected
since all the models capture Maxwellian equilibrium distributions.

b. Close fluid regime / intermediate regime
On Figure 10, density (top left), speed (top right), temperature (bottom
left) and heat flux (bottom right) profiles are displayed at time t = 0.1 in
the case τ = 1/ν = 10−1. In this intermediate regime (still close of the
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Figure 5: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 0
(fluid regime) at time t = 0.25.

fluid regime) it is observed that the M1 model is the most inaccurate clearly
overestimating the density profiles. When looking at higher order moments
quantities such as the heat flux, it is remarked that the M1 heat flux profile
is too sharp while the Navier-Stokes heat flux under-estimates the solution.
The M2 profiles and the kinetic ones are very close. As already observed in
this close fluid regime that M1 seems less accurate than Navier-Stokes while
M2 is by far the most accurate reduced models.

c. Intermediate / rarefied regimes
On Figure 11, density (top left), speed (top right), temperature (bottom
left) and heat flux (bottom right) profiles are displayed at time t = 0.1 in
the case τ = 1/ν = 1 (still intermediate collisional regimes). Here also, even
if the flow is not really rarefied, it is observed that the Navier-equations
profiles are completely wrong. Even if the M1 results are not perfect they
are rather accurate and M2 is very accurate. As before, we do not push
the numerical tests into rarefied regimes since the Navier-Stokes results gets
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Figure 6: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 10−2

(close of fluid regime) at time t = 0.1.

even worse while the angular moments keep the same level of accuracy. This
clearly shows the interest in considering angular moments models to capture
accurate heat fluxes especially in rarefied regimes.

3.4 Stationary shock wave

The last numerical test case we consider is taken from [31] and consists
in studying the length of a stationary shock for different upstream flows.
At initial time, one starts with Maxwellian distribution functions and the
upstream flow (left in-going flow) is set as follow

ρL = mnL = 66.3 · 10−7,

uL = M
√
γRTL,

TL = 293,

where M is the Mach number (which will be made vary) and the physical
parameters are γ = 5/3 and R = kb/m = (1.38054 · 10−23)/(66.3 · 10−27).
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Figure 7: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 10−1

at time t = 0.1.

The downstream flow is fixed using the Rankine-Hugoniot conditions (sta-
tionary shock). In addition a non-constant collisional period is considered
and depends on density and temperature as followed

τ = 1/ν = 1.08 · 10−9 · (T−0.19)/n.

The width of the computational domain is 0.5 and a grid of 400 cells is used.
The velocity modulus used for the angular moments model is [0, 5000] with
500 cells. For each value of the Mach number, the length of the stationary
shock wave is different. Indeed, by changing the upstream velocity one also
modifies the collisional frequency and the corresponding shock length. The
results obtained with the angular models are displayed in Figure (12) and
compared with those given in [31] (for Navier-Stokes and BGK). The inverse
of the shock thickness is given for different values of the Mach number. First
of all, the results presented in (12) show that the kinetic BGK model (red
circles) is able to reproduce the correct shock thickness for all the Mach
numbers (good agreement with the experiments see [31]). On the other hand,

16



-3 -2 -1 0 1 2 3 4
x

0,2

0,4

0,6

0,8

1

D
en

si
ty

Initial condition
BGK
Navier-Stokes
M1
M2

-3 -2 -1 0 1 2 3 4
x

0

0,2

0,4

0,6

0,8

1

S
p
ee

d

Initial condition
BGK
Navier-Stokes
M1
M2

0 1
x

0,8

1

T
em

p
er

at
u
re

Initial condition
BGK
Navier-Stokes
M1
M2

0 1
x

-0,05

0

0,05

0,1

0,15
H

e
a
t 

fl
u
x

Initial condition
BGK
Navier-Stokes
M1
M2

Figure 8: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 1
(intermediate regimes) at time t = 0.1.

it is observed that the Navier-Stokes results (black dash lines) are only valid
for small Mach number values (≈ 1). Concerning the angular moments
models, it is remarked that the M1 model (in green) underestimates the
shock profiles for all the different Mach number. For small and intermediate
values of the Mach number (≈ 1 − 6), the Navier-stokes results are more
accurate than the ones obtained with the M1 model while for large Mach
numbers the Navier-Stokes and M1 results are comparable. On the contrary
it is observed that the M2 model is always much more accurate than the
M1 model and the Navier-Stokes equations and is close to the BGK and the
experiments.

4 Numerical costs

The numerical costs greatly depends on the number of cells used for the
velocity modulus grid in addition to the size of the grid (which constrains
the CFL condition). Similarly, kinetics codes are strongly impacted by the
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Figure 9: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 0
(fluid regime) at time t = 0.2.

number of cells used for the velocity grids in addition to the size of the grid.
Typically, for the numerical test case presented, it is observed the M1 code is
about three times slower than the Navier-Stokes code (this is expected since
a velocity modulus grid is used). The M2 code is about six times longer
than the Navier-Stokes code while the reference kinetic code is much longer
(more than twenty times longer). Again, we emphasize that the numerical
costs strongly depends on the configuration studied. However, even if the
angular moments models codes are more expensive than the Navier-Stokes
code they are always much faster than the kinetic reference ones.

5 Conclusion and perspectives

In the present communication, angular moments models based on a mini-
mum entropy problem have been presented for rarefied gas dynamics appli-
cations. The numerical simulations carried out in various collisional regimes
illustrate the interest in considering angular moments models for rarefied
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Figure 10: Representation of the density (top left), speed (top right), tem-
perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 10−1

at time t = 0.1.

gas dynamics applications. In particular, the comparisons with the Navier-
Stokes equation and the kinetic reference clearly point out the accuracy
of angular models in rarefied regimes. As perspectives the derivation of
rigorous boundary conditions will be investigated. In addition numerical
comparisons in a 2D space geometry can also be considered.
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perature (bottom left), heat flux (bottom right) in the case τ = 1/ν = 1 at
time t = 0.1.

6 Appendix

6.1 Closure relations

In this section the closure relations used for the M1 and M2 models are
provided. We highlight that the derivation of the closure relations is chal-
lenging and we refer to [21, 40] for the procedure details which are clearly
out the scope of the present document. Here, the closure relations used to
perform the numerical comparisons are simply given.

a. M1 closure
In the 1D framework the approximated M1 closure considered simply reads

f2(x) = χM1(x)f0, χM1(x) = (1 + x2 + x4)/3, x = f1/f0.

b. M2 closure
The M2 closure given here is taken from [40]. In the 1D framework it writes

f3(x1, x2) = χM2(x1, x2)f0, x1 = f1/f0, x2 = f2/f0.
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where χM2 is defined as follows

χM2(x, y) = b−(x, y)θ3(x, y) + b+(x, y)(1− θ3(x, y)).

where

b−(x, y) = −y +
(x+ y)2

(1 + x)
, b+(x, y) = y − (x− y)2

(1 + x)
,

and the coefficient θ3 ∈ [0, 1] is defined by

θ3(x, y) = E

(
(T1, 0),

(
T2,

χ2(x)− x2

1− x2

)
, (T3, 1)

)
(y)+Z

(
0,
χ2(x)− x2

1− x2
, 1

)
(y)Q1(x, y).

The following notations have been used: The polynomial of degree two
interpolating the values A, B and C at the points a, b and c is denoted
E, and Z denotes the polynomial of degree three which is zero in a, b and c:

E((A, a), (B, b), (C, c))(x) = A
x− b
a− b

x− c
a− c

+B
x− a
b− a

x− c
b− c

+ C
x− a
c− a

x− b
c− b

,

Z(a, b, c)(x) = (x− a)(x− b)(x− c).

The coefficient χ2 is defined by

χ2(x) = x2θ1(x) + (1− θ1(x)),
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with

θ1(x) = x2 +
2

3
(1− x2) + x2(1− x2)(c0 + c1x

2 + c2x
4),

where c0 = −0.0954823981432433, c1 = 0.229069986304953 and c2 = 0.0344846229504588.
Q1 is a polynomial of x and y. Its coefficients are chosen such that the dis-
crete L2 distance between the approximated and the exact χM2 (computed
by solving the M2 minimization problem for 104 values of (x1, x2), given by
100 values of x equally distributed in [0, 1] and 100 of y equally distributed
in [0, 1]) is minimized (see [40]). It is defined by

Q1(x, y) =
n=8∑
i=1

n=8∑
j=1

aijx
i−1yj−1,

where aij refers to the element in row i and column j of matrix A:

1.2560236 0.055167449 0.26278138 1.0683350 0.59814167 −0.64518803 −1.0633483 0.88934267
−0.68894512 0.31161185 1.2786018 −0.31163011 −2.9649475 −4.5186998 −3.3074111 1.6029077
0.12662825 2.5077746 3.9023476 3.0134469 1.6566437 1.6814247 4.2771384 9.9743799
−4.4012020 −2.2244757 −1.6449706 −2.7851846 −4.0598413 −4.0955056 −2.0870623 2.2694786
−0.84307105 0.56713889 −0.010068180 −2.0311387 −4.1712022 −5.4023878 −5.1525837 −3.2239003

4.1781734 6.0798187 5.4981218 3.3301219 0.72710695 −1.4776834 −2.8201005 −3.1245525
1.1299516 5.7191442 7.0928923 6.3554499 4.5787199 2.5179169 0.61766327 −0.91306843
−16.015241 −6.4386305 −1.0307863 1.4581785 2.0925223 1.6270272 0.54281204 −0.88389340


In addition

T1 :=
b+ − κ1
b+ − b−

(x, 0), T2 :=
b+ − κ1
b+ − b−

(
x,
χ2(x)− x2

1− x2

)
, T3 :=

b+ − κ1
b+ − b−

(x, 1).

where

κ1(x, 0) = x3, κ1

(
x,
χ2(x)− x2

1− x2

)
= χ3(x), κ1(x, 1) = x,

with
χ3(x) = b−(x, χ2(x))θ2(x) + b+(x, χ2(x))(1− θ2(x)),

and

θ2(x) =
1

2
+ x

(
−1

2
+ (1− x2)(d0 + d1x

2 + d2x
4)

)
,

with d0 = 0.386143553495150, d1 = 0.488034553677475 and d2 = 0.681343955348390.

6.2 Numerical strategy

The numerical strategy used for the angular moments models is now pre-
sented. We write the discrete quantities with an index i for the space dis-
cretisation and an index j for the modulus velocity discretisation. The time
step, the space step and the velocity modulus step are respectively denoted
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∆t, ∆x and ∆ζ.

a. Discrete M1 model
In the 1D slab the HLL numerical scheme used for the M1 model (4) (in
the simplified case of opposite wave velocities in the underlying approximate
Riemann solver) with implicit collisional terms writes

fn+1
0ij − fn0ij

∆t
+
fn1i+1/2j − f

n
1i−1/2j

∆x
= νn+1

i (Mn+1
0ij − f

n+1
0ij ),

fn+1
1ij − fn1ij

∆t
+
fn2i+1/2j − f

n
2i−1/2j

∆x
= νn+1

i (Mn+1
1ij − f

n+1
1ij ),

(12)

where the numerical fluxes used are defined by
fn1,i+1/2j =

ζj
2

(fn1i+1j + fn1ij)−
ζj
2

(fn0i+1j − fn0ij),

fn2,i+1/2j =
ζj
2

(fn2i+1j + fn2ij)−
ζj
2

(fn1i+1j − fn1ij).

It is well known that this numerical scheme preserves the admissibility of
the numerical solution that under CFL condition

∆t ≤ ∆x

||ζ||∞
.

The same procedure is used for the M2 model.

b. Discretisation of the conservation laws
In order to compute the terms Mn+1

0i , Mn+1
1i and the collisional frequencies

νn+1
i , a suitable discretisation of the conservation laws (9) is required. Inte-

grating (at the discrete level) the numerical scheme (12) leads to the discrete
continuity equation

nn+1
i − nni

∆t
+
∑
j

fn1i+1/2j − f
n
1i−1/2j

∆x
∆ζ = 0.

The discrete momentum equation is obtained by multiplying the second
equation of (12) by ζj∆ζ and adding in j

(nu)n+1
i − (nu)ni

∆t
+
∑
j

fn2i+1/2j − f
n
2i−1/2j

∆x
ζj∆ζ = 0.

The energy equation is obtained by multiplying the first equation of (12) by
ζ2j ∆ζ/2

En+1
i − En

i

∆t
+
∑
j

fn1i+1/2j − f
n
1i−1/2j

∆x

ζ2j
2

∆ζ = 0.
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