
Phys. Plasmas 29, 090901 (2022); https://doi.org/10.1063/5.0088013 29, 090901

© 2022 Author(s).

Chapman–Enskog derivation of
multicomponent Navier–Stokes equations
Cite as: Phys. Plasmas 29, 090901 (2022); https://doi.org/10.1063/5.0088013
Submitted: 11 February 2022 • Accepted: 17 June 2022 • Published Online: 01 September 2022

 Philippe Arnault and Sébastien Guisset

ARTICLES YOU MAY BE INTERESTED IN

Announcement: The 2021 James Clerk Maxwell prize for plasma physics
Physics of Plasmas 29, 070201 (2022); https://doi.org/10.1063/5.0106539

Progress toward fusion energy breakeven and gain as measured against the Lawson criterion
Physics of Plasmas 29, 062103 (2022); https://doi.org/10.1063/5.0083990

The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability
for laser-driven Hohlraums
Physics of Plasmas 29, 083901 (2022); https://doi.org/10.1063/5.0100985

https://images.scitation.org/redirect.spark?MID=176720&plid=1873345&setID=418178&channelID=0&CID=689260&banID=520755613&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=d0342e6ef8ff90064f04ee9b0e6878f70b8458c6&location=
https://doi.org/10.1063/5.0088013
https://doi.org/10.1063/5.0088013
https://orcid.org/0000-0002-6384-0213
https://aip.scitation.org/author/Arnault%2C+Philippe
https://aip.scitation.org/author/Guisset%2C+S%C3%A9bastien
https://doi.org/10.1063/5.0088013
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088013
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0088013&domain=aip.scitation.org&date_stamp=2022-09-01
https://aip.scitation.org/doi/10.1063/5.0106539
https://doi.org/10.1063/5.0106539
https://aip.scitation.org/doi/10.1063/5.0083990
https://doi.org/10.1063/5.0083990
https://aip.scitation.org/doi/10.1063/5.0100985
https://aip.scitation.org/doi/10.1063/5.0100985
https://doi.org/10.1063/5.0100985


Chapman–Enskog derivation of multicomponent
Navier–Stokes equations

Cite as: Phys. Plasmas 29, 090901 (2022); doi: 10.1063/5.0088013
Submitted: 11 February 2022 . Accepted: 17 June 2022 .
Published Online: 1 September 2022

Philippe Arnaulta) and S�ebastien Guissetb)

AFFILIATIONS

CEA, DAM, DIF, 91297 Arpajon, France

a)Author to whom correspondence should be addressed: philippe.arnault@cea.fr
b)Electronic mail: sebastien.guisset@cea.fr

ABSTRACT

There are several reasons to extend the presentation of Navier–Stokes equations to multicomponent systems. Many technological applications
are based on physical phenomena that are present in neither pure elements nor in binary mixtures. Whereas Fourier’s law must already be
generalized in binaries, it is only with more than two components that Fick’s law breaks down in its simple form. The emergence of dissipative
phenomena also affects the inertial confinement fusion configurations, designed as prototypes for the future fusion nuclear plants hopefully
replacing the fission ones. This important topic can be described in much simpler terms than it is in many textbooks since the publication of
the formalism put forward recently by Snider [Phys. Rev. E 82, 051201 (2010)]. In a very natural way, it replaces the linearly dependent atomic
fractions by the independent set of partial densities. Then, the Chapman–Enskog procedure is hardly more complicated for multicomponent
mixtures than for pure elements. Moreover, the recent proposal of a convergent kinetic equation by Baalrud and Daligault [Phys. Plasmas 26,
082106 (2019)] demonstrates that the Boltzmann equation with the potential of mean force is a far better choice in situations close to
equilibrium, as described by the Navier–Stokes equations, than Landau or Lenard–Balescu equations. In our comprehensive presentation, we
emphasize the physical arguments behind Chapman–Enskog derivation and keep the mathematics as simple as possible. This excludes, as a
technical non-essential aspect, the solution of the linearized Boltzmann equation through an expansion in Hermite polynomials. We discuss
the link with the second principle of thermodynamics of entropy increase, and what can be learned from this exposition.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088013

I. INTRODUCTION

Navier–Stokes (NS) equations1 describe the hydrodynamic evo-
lution in time and space of fluids, with ubiquitous applications in
nature and technology. Of particular interest are the experiments per-
formed by large laser facilities, to probe extreme states of matter such
as encountered in astrophysics2 or to set up configurations for inertial
confinement fusion (ICF).3 ICF is an emerging technology aimed at
providing the next generation of nuclear plants. It provides fusion
energy from the implosion of a capsule filled with deuterium and tri-
tium (DT). In this context, there is a renewed interest in kinetic theory
since various conditions are met from hydrodynamic-like to strongly
out-of-equilibrium phenomena.

It is a new circumstance that multicomponent diffusion in weakly
coupled plasmas must be considered as a part of the hydrodynamic
simulation of the ICF capsule implosions.4–6 Multicomponent diffu-
sion is also an essential ingredient of many technological applications,
reviewed by Krishna,7 where counter-intuitive phenomena occur as
the osmotic diffusion where the presence of a third component leads

to an uphill diffusion between the other two components against their
concentration gradient.

The Navier–Stokes equations can be derived from the thermody-
namics of irreversible processes8 under two principal assumptions:
first that the system be close to thermodynamical equilibrium and sec-
ond that any gradient of thermodynamic quantity be small. Then, the
gradients lead to dissipative phenomena acting against them, which
appear as fluxes of mass, momentum, and energy. These fluxes are
proportional to the gradients, and the coefficients of proportionality
are the transport coefficients. Important properties of symmetry of the
transport coefficients are obtained from the second principle of ther-
modynamics about the increase in entropy of an isolated system.
Nevertheless, this route toward the Navier–Stokes equations does not
provide any criteria of thermodynamic equilibrium nor does it provide
recipes to compute the transport coefficients.

The kinetic theory is another route toward the Navier–Stokes
equations that draws a relationship between microscopic events and
macroscopic behaviors (see Refs. 9 and 10 for instance). This leads
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naturally to a criterion of equilibrium and to a prescription to compute
the transport coefficients. Then, the symmetry of the transport coeffi-
cients is warranted by construction. Moreover, the second principle of
thermodynamics becomes a consequence of the theory. However, all
this is at the cost of a restriction to only deal with systems where the
interaction energy between the particles is much weaker than their
kinetic energy.

The domain of validity of the kinetic theory encompasses the sit-
uations of dilute neutral gas at low density n, where there is rarely
more than two particles within the range r of the interaction potential
V(r), so that n r3 � 1, and the situations of weakly coupled plasmas
at high temperature T, where the effect of the multiple collisions of a
particle with the others can be summed in pairs, since the strength of
the potential V0 at typical interparticle distances is far less that the
mean kinetic energy, V0=kT � 1 (k is the Boltzmann constant).11,12

The cornerstone of the derivation of the Navier–Stokes equations
using the kinetic theory is an expansion of the equations with respect
to a small parameter: the Knudsen number, which is defined later.
This permits to develop analytically the foundations of the theory and
to obtain exact results within a controlled validity domain.
Unfortunately, the mathematical apparatus of the kinetic theory is
quite intricate and it often obscures to the novices the physical princi-
ples at the heart of the theory. Here, we present a derivation of the
multicomponent Navier–Stokes equations, which emphasizes the
physical ingredients and keep the analytical developments as simple as
possible, thanks to Snider’s recent proposal for a new treatment of
multicomponent diffusion.13 Indeed, the complexity inherent in the
treatment of multicomponent systems stems from the appearance of a
set of N linearly dependent concentrations xi, where N is the number
of components i in the mixture. Fortunately, Snider13 proposed to cir-
cumvent this difficulty using the set of the independent partial densi-
ties ni instead of the concentrations xi.

Another recent breakthrough in the theory is the recent work of
Baalrud and Daligault12 on a convergent kinetic equation particularly
well adapted to systems close to equilibrium. It is Boltzmann equation
with the potential of mean force. To find a closure of the BBGKY hier-
archy, they exhibited an expansion parameter independent of the
range or the strength of the interaction potential. As a result, their
kinetic equation applies equally well to neutral gas and plasmas and
admits a particularly large validity domain.14

We start, in Sec. II, by explaining how the fluid equations are
obtained as the velocity moments of Boltzmann’s equations. It is the
occasion to emphasize the central role of the conservation equations of
mass, momentum, and energy, in separating slow modes of variations
associated with the fluid equations from fast modes associated with
the collision integrals.

In Sec. III, the main steps of the Chapman–Enskog derivation are
described: the fluid scaling that results in the appearance of the inverse
Knudsen number e in Boltzmann’s equation; the separation in order
of e between Euler’s and Navier–Stokes equations; and Snider’s formu-
lation of the driving forces associated with the different gradients of
partial densities, velocity, and temperature, which leads to the corre-
sponding general solution of the linearized Boltzmann equations. The
Navier–Stokes equations are then obtained substituting this solution
into the fluid equations.

We found that the analysis (made in Sec. IV) of the rate of
entropy production highlights the emergence of the dissipation

mechanisms associated with the transport coefficients. It is also a use-
ful guide to introduce and define them, providing their properties of
symmetry with physical insights, especially with respect to the thermal
conductivity.

Section V is dedicated to a concrete illustration of the emergence
of the dissipative phenomena as the number of components in a mix-
ture increases from pure elements to binary mixtures, and, finally, ter-
nary mixtures. We examine here how Fourier’s and Fick’s laws, in
their simple form, must be generalized in these situations and we esti-
mate qualitatively the impact of the generalized Fick’s law on some
ICF configurations.

For completeness, we provide two Appendixes on binary colli-
sions (Appendix A), the derivation of Boltzmann’s equation, and its
properties (Appendix B). Other Appendixes are also provided that
give the missing steps of some derivations.

II. FROM BOLTZMANN KINETIC EQUATION TO FLUID
EQUATIONS
A. Boltzmann equation

The Boltzmann kinetic equation describes the evolution in time t,
space r, and velocity v of the distribution function fiðt; r; vÞ. We
choose the normalization of fi, where fiðt; r; vÞ d3r d3v is the number
of particles of species i (and mass mi) at time t, in the volume element
of space between r and rþ d3r, and in the volume element of velocity
between v and v þ d3v. In the absence of external force, the
Boltzmann equation then reads

@t fi þ vi � rfi ¼
X
j

J fi; fj
� �

ðviÞ; (1a)

with the Boltzmann collision integrals (see Appendix B 1)

J fi; fj
� �

ðviÞ ¼
ð
ðf 0i f 0j � fifjÞ vij 2p b db d3vj: (1b)

The shortcut notation f 0i stands for fiðt; r; v0iÞ, where v0i is the velocity
of a particle of species i after its binary collision with a particle of spe-
cies j of initial velocity vj. Actually, the notation fi embarks also the
information about species i: its mass mi and density ni. In the binary
collision, vij ¼ vj � vi corresponds to the initial relative velocity and
the variable b is the impact parameter defined as the minimal distance
between the two particles if they do not interact and move in straight
lines. Actually, the way this equation is written is highly symbolic since
the velocities after collision are non-trivial functions of the initial
velocities (see Appendix A)

v0i ¼
mj

mi þmj
v0ij þ V; (1c)

with the center of mass velocity

V ¼
mivi þmjvj
mi þmj

; (1d)

and the relative velocity after collision

v0ij ¼ vij cos ðvÞ ex þ sin ðvÞ ey
� �

; (1e)

for a cartesian system, where the x-axis is along the initial relative
velocity, ex ¼ vij=vij, and ey ¼ ez � ex with ez ¼ ðvi � vjÞ=vivj, a unit
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vector perpendicular to the trajectory plane. Finally, the deflection
angle v is related to the impact parameter b, the relative velocity vij,
and the pair interaction potential EPðrÞ by

v ¼ vðb; vij;EPÞ ¼ p� 2
ð1
r0

1
r2

bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

r2
�WðrÞ

r ; (1f)

where r0 is the turning point (the largest root of the denominator in
the integrand) and

WðrÞ ¼ EPðrÞ
1
2
mijv

2
ij

; (1g)

withmij ¼ mimj=ðmi þmjÞ, the reduced mass.

B. Collisional invariants

It is crucial to realize that the collision operator J½fi; fj�ðviÞ of the
Boltzmann kinetic equation represents the net effect between the colli-
sions with species j depleting the distribution function fi of species i at
a given velocity vi and the inverse collisions replenishing the distribu-
tion (see Appendix B 1). Since the hydrodynamic equations are
obtained as the velocity moments of Boltzmann’s equation, we shall
see that the only way to get rid of the collision terms is to sum each
moment equation over all species in the mixture. By doing so, the con-
servation of mass, momentum, and energy applies whatever the distri-
bution functions and the resulting fluid equations do not involve
collisional (friction) terms. The only link to the distribution functions
appears through the expressions of the transport coefficients, which
constitute the closures of the fluid equations.

Actually, this comes from the fundamental properties of a colli-
sional operator with respect to the collisional invariants corresponding
to the conservation of mass, momentum, and energy. Indeed, sum-
ming over all the collisions involving species i directly leads to

X
j

ð
J fi; fj
� �

ðviÞ d3vi ¼ 0; (2a)

so that no particles are created nor annihilated. This is verified by
Boltzmann’s collision operator for each separated value of j using Eq.
(B6) with KðvÞ ¼ m. In addition, by summing over all the collisions,
one gets that

X
i;j

ð
mivi J fi; fj

� �
ðviÞ d3vi ¼ 0 (2b)

and

X
i;j

ð
1
2
miv

2
i J fi; fj
� �

ðviÞ d3vi ¼ 0; (2c)

which include the momentum and the energy conservation equations
for each collision. This is verified by Boltzmann’s collision operator
using Eq. (B7) with KðvÞ ¼ mv and KðvÞ ¼ 1

2mv2, respectively.
Consequently, m, mv, and 1

2mv2 are collisional invariants of the
Boltzmann integrals. These properties will be used extensively in Sec.
II C. We also recall Eq. (B7) for later use

X
i;j

ð
KðviÞ J fi; fj

� �
ðviÞ d3vi

¼ � 1
4

X
i;j

ð
ðK 0i þ K 0j � Ki � KjÞ ðf 0i f 0j � fifjÞ

� vij 2pb db d
3vid

3vj: (3)

C. Fluid equations

First, it is worth recalling that the space and velocity variables of
the Boltzmann equation are independent. Therefore, the advection
term reads

@t fi þ vi � rfi ¼ @t fi þr � ðvifiÞ: (4)

The integration of the Boltzmann equation over velocity, exploiting
the global conservation property Eq. (2a) of the collisional invariants,
gives rise to the following species mass conservation equation,

@tqi þr � qiuð Þ þ r � qiUið Þ ¼ 0; (5a)

which describes the space-time evolution of the partial density qi,
defined by

qi ¼ mini ¼ mi

ð
fiðt; r; vÞ d3v: (5b)

The total density q ¼
P

i qi ¼ mn and correspondingly n ¼
P

i ni
andm ¼

P
i xi mi with xi ¼ ni=n. The fluid velocity reads

u ¼ 1
q

X
i

qiui; (5c)

where the peculiar velocity ui of species i is defined by

niui ¼
ð
v fiðt; r; vÞ d3v: (5d)

We write itUi in the co-mobile frame

Ui ¼ ui � u ¼ 1
ni

ð
ðv � uÞ fiðt; r; vÞ d3v: (5e)

The momentum conservation equation is obtained by multiply-
ing the Boltzmann equation (1a) by mivi, integrating in velocity, and
summing over all the species to cancel any contribution from the colli-
sional operators according to Eq. (2b) [see Eq. (C1) in Appendix C]

X
i

ð
dvi mivi � ð1aÞ

() @tðquÞ þ r � qu� uþP
� � ¼ 0; (6a)

with the pressure tensor

P ¼
X
i

mi

ð
ðv � uÞ � ðv � uÞ fiðt; r; vÞ d3v: (6b)

Similarly the energy conservation equation is obtained by multiplying
the Boltzmann equation (1a) by 1

2miv2i , integrating in velocity, and
summing over all the species to cancel any contribution from the colli-
sional operators according to Eq. (2c) [see Eqs. (C2) in Appendix C]
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X
i

ð
dvi

1
2
miv

2
i � ð1aÞ

() @tE þr � E uþP � uþ q
� � ¼ 0: (7a)

The energy density E is defined by

E ¼
X
i

ð
1
2
miv

2 fiðt; r; vÞ d3v ¼
1
2
qu2 þ 3

2
n kT; (7b)

where T is the temperature and k Boltzmann’s constant. The heat flux
is defined by

q ¼
X
i

ð
1
2
miðv � uÞ2ðv � uÞ fiðt; r; vÞ d3v: (7c)

Finally, we point out that the flow variables are ni, u, and T, and some
closure relations must be provided for the fluxes Ui;P; q to complete
the fluid equations system (5)–(7). The procedure leading to the multi-
component Navier–Stokes closure relations is explained in Sec. III.

D. Euler’s closures

The most simple closure relation consists in considering the
velocity distribution functions fi in local thermodynamic equilibrium.
In that case, they write under the form of Maxwellian distribution
functionsMi

Miðt; r; vÞ ¼ niðt; rÞ
mi

2p kTðt; rÞ

� �3=2

exp �mi v � uðt; rÞð Þ2

2 kTðt; rÞ

 !
;

(8a)

where all the space-time dependence is conveyed by the variables ni, u,
and T. Inserting relation (8a) into the definitionsUi;P; q one recovers
the well-known Euler equations with

Ui ¼
1
ni

ð
ðv � uÞMiðvÞ d3v ¼ 0; (8b)

P ¼
X
i

mi

ð
ðv � uÞ � ðv � uÞMiðvÞ d3v ¼ p Id ; (8c)

q ¼
X
i

ð
1
2
miðv � uÞ2ðv � uÞMiðvÞ d3v ¼ 0; (8d)

where p ¼ nkT is the ideal gas pressure.

III. CHAPMAN–ENSKOG FORMULATION
A. Fluid scaling at small Knudsen

The fluid scaling of kinetic equations introduces a small parame-
ter, the Knudsen number e representing the ratio between the small
space and time scales of the microscopic processes and the large scales
of the macroscopic flows. This allows one to develop a perturbation
expansion of the velocity distribution function. Eventually, this pertur-
bation development gives rise to the Navier–Stokes (NS) hydrody-
namic equations.

From an operational point of view, it is worth getting a procedure
to estimate e in any given situation in order to monitor its smallness
and to assess the validity of the NS equations. As a first step, we con-
sider that the macroscopic time scale T0 and length scale L0 result
from an analysis of the solution of Euler equations. This corresponds

to the assumption that fi ¼ Mi. Assume f still varies on macroscopic
scales close to equilibrium and introduce dimensionless quantities

~t ¼ t=T0; ~r ¼ r=L0; ~v ¼ v=c0; (9a)

where c0 is of the order of the sound speed. Let N be the number of
particles within the volume L30

ni ¼
N

L30
; (9b)

the dimensionless particle distribution function is then defined by

~fið~t ;~r; ~vÞ ¼
L30 v

3
th

N
fiðt; r; vÞ; (9c)

where vth is the thermal velocity. It is worth remarking that the sound
speed c0 is of the same order as the thermal velocity vth /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=mi

p
.

We shall also assume that it is of the order of L0=T0. By contrast, the
length scale k and the time scale s associated with the collisions
between particles are of microscopic nature, far less than their macro-
scopic counterpart, L0 and T0. Table I gathers these characteristic
scales.

The microscopic length scale to compare with L0 is the mean free
path k between two collisions. However, the only space variable of the
Boltzmann collision integrals is the impact parameter b, which is of
the order of the maximum impact parameter b0 for the collisions with
the smallest deflection of the particles.

For weakly coupled plasmas, the maximum impact parameter b0
is of the order of the Debye length kD.

11,15 This length scale character-
izes the screening of a test charge by the unlike charges piled up
around it and the like charges repelled from it. The Coulomb potential
VCðrÞ ¼ Q=r of the test charge Q is dressed by this shielding cloud to
form a Debye–H€uckel (DH) potential VDHðrÞ ¼ Q exp ðr=kDÞ=r.
This DH potential is the solution of a Poisson–Boltzmann system of
equations, linearized with respect to VCðrÞ=kT . This linearization is a
good approximation in the validity domain of the kinetic theory, often
characterized by large values of the parameter K ¼ nk3D, which repre-
sents the number of charges in a Debye cube. In these conditions, each
charge interacts simultaneously with many other charges in a Debye
sphere. Most of these collisions gives rise to razing diffusion and the
mean free path k is defined as the typical distance, where the cumula-
tive effect of the different collisions is associated with a substantial
deflection.11

In another equivalent definition, the mean free path k is defined
from a collision frequency �c itself defined from a multi-fluid approach
to the hydrodynamic equations.16 When Maxwellian distribution
functions fiðvÞ of species with equal temperature but different mean
velocities ui are introduced in the collision integrals, the velocity

TABLE I. Macroscopic and microscopic characteristic scales.

Macroscopic Microscopic

Length, ½L� Smallest gradient
length, L0

Mean free path,
k ¼ vth s

Time, ½T� Smallest time scale, T0 Collision time, s
Velocity, ½L=T� Sound speed, c0� vth Thermal velocity, vth
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moments of the kinetic equations give rise to friction terms that can be
put under the form mi ni �ij ðuj � uiÞ to define a collision frequency
�c ¼ �ij for the interaction between species i and j.

In both approaches, the mean free path k is proportional to the
Debye length kD and inversely proportional to the parameter K

k / kD
K
¼ 1

nk2D
: (10)

For dilute gas, the mean free path k depends on both b0 and the
density ni. Indeed, consider a tube of length k and radius b0 in front of
a particle. In a dilute gas, the hypothesis of binary collision requires
that there can be only one particle in this tube, which will undergo a
collision. Therefore,

ni b
2
0 k 	 1: (11)

We are now ready to propose the fluid scaling of the Boltzmann equa-
tion. The advection term scales as

@t fi þ v � rfi ¼
N

L30 v
3
th

1
T0
@~t

~f i þ
c0
L0

~v � ~r~f i

� �
; (12a)

whereas the collision term scales as

J fi; fj
� �

ðviÞ ¼
N

L30 v
3
th

 !2

v4th b
2
0

~J ~f i;
~f j

h i
: (12b)

Dropping the tilde notations and equaling c0, vth, and L0=T0, the
dimensionless multi-species Boltzmann equation reads

@t fi þ v � rfi ¼
N b20
L20

X
j

Jðfi; fjÞ: (12c)

The collision operator pre-factor is proportional to the inverse
Knudsen number e. It reads

N b20
L20
¼ L0

N

L30
b20 ¼ L0 nib

2
0 ¼

L0
k
¼ 1

e
; (12d)

using Eqs. (9b) and (10) or (11). Interestingly, we end up with the
same fluid scaling starting from very different assumptions to estimate
the mean free path either in plasmas or in neutral gas. Kinetics and
fluid dynamics of plasmas with multiple ion species are no different
than gas mixtures in this respect. e is the ratio between the microscopic
and macroscopic length scales. It is also the ratio between the micro-
scopic and macroscopic time scales, since L0 / c0T0 and k / vths

e ¼ k
L0
¼ s

T0
: (13)

B. Chapman–Enskog ansatz

The formulation proposed by Chapman and Enskog17 starts
from the Boltzmann equation in the reduced units of the fluid scaling.
It then introduces a close relationship between the expansion of the
velocity distribution functions according to the order in e, the
Knudsen number, and the hydrodynamic equations: Euler’s equations
control the leading order, and the NS equations are associated with the
next-to-leading order. This important point is often obscured by the

complicated mathematical apparatus accompanying the calculation of
the transport coefficients, i.e., the development of the solution in
orthogonal Sonine polynomials. In the following, the derivation proce-
dure is kept as simple as possible principally because we do not present
the practical calculation of the transport coefficients, but only their
expressions as functionals of the solution of the kinetic equations. The
final expressions are naturally translated in dimensional units by
equating e to 1.

The Chapman–Enskog ansatz prescribes to look for a perturba-
tion /iðt; r; vÞ of the particle distribution function

fiðt; r; vÞ ¼ Miðt; r; vÞ 1þ e /iðt; r; vÞ½ �; (14)

keeping the relations between ni, u, T and the leading order (e ¼ 0).
Therefore, the unknown /iðt; r; vÞ must fulfill the following
constraints: ð

MiðvÞ/iðvÞ d3v ¼ 0; (15a)

X
i

mi

ð
vMiðvÞ/iðvÞ d3v ¼ 0; (15b)

X
i

ð
mi

2
ðv � uiÞ2 MiðvÞ/iðvÞ d3v ¼ 0: (15c)

So we have the following relations giving the partial densities ni, the
fluid velocity u, and the temperature T as integrals over the leading
order, i.e., Maxwellians, whatever the order of the development of the
distribution functions fi

niðt; rÞ ¼
ð
Miðt; r; vÞ d3v; (15d)

q uðt; rÞ ¼
X
i

mi

ð
vMiðt; r; vÞ d3v; (15e)

3
2
n kTðt; rÞ ¼

X
i

ð
mi

2
ðv � uiÞ2Miðt; r; vÞ d3v: (15f)

Due to the fluid scaling, there is a shift in en orders

e @t fi þ vi � rfi½ �ðnÞ ¼
"X

j

J fi; fj
� �

ðviÞ
#
ðnþ1Þ

: (16)

More precisely at order n¼ 0 (fi ¼ Mi), the following relation is
obtained: X

j

J Mi;Mj½ �ðviÞ ¼ 0; (17)

which is verified sinceM0iM
0
j ¼ MiMj according to the energy conser-

vation in each binary collision, Eq. (A1). At next order n¼ 1, Eq. (14)
leads to

@tMi þ vi � rMi ¼
X
j

I /i;/j
� �ðviÞ; (18)

with now linear collision integrals (by using the fact that
M0iM

0
j ¼ MiMj)

I /i;/j
� �ðviÞ ¼

ð
MiMj ð/0i þ /0j � /i � /jÞ vij 2p b db d3vj: (19)
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The left-hand side of Eq. (18) comprises the time derivatives and the
spatial gradients of the partial densities ni, the fluid velocity u, and the
temperature T. The time derivatives are reduced to spatial gradients
Sec. III C. When the gradients vanish, Eq. (18) is homogeneous.
Clearly, the general solution of this homogeneous equation is a linear
combination of the collisional invariants. However, we are looking for
perturbations around equilibrium, driven by the gradients. Therefore,
we discard the solutions involving the collisional invariants.

C. Snider’s approach to driving forces

In accordance with the shift in e order, the left-hand side of Eq.
(18) must be evaluated at order 0. This means, in particular, that the
time derivatives of the partial densities ni, the fluid velocity u, and the
temperature T are related to their spatial gradients by Euler equations
(see Sec. IID). The calculations are eased using the following form:

@tMi þ vi � rMi ¼ Mi @t log ðMiÞ þ vi � r log ðMiÞ½ �; (20a)

with

log ðMiÞ ¼ log ðniÞ �
3
2
log ðTÞ �miðvi � uÞ2

2kT
þ C; (20b)

where C is a numerical constant. Now by setting ci ¼ vi � u one gets
the following relation (all the computational details are presented in
Appendix D):

1
Mi
ð@tMiþ v �rMiÞ ¼

mic2

2kT
� 3
2
�mi

m

� �
c �r logT

þ mi

kT
c� c : Sþ 1

ni

X
k

dik�
mini
q

� �
c �rnk;

(20c)

where the vectorial symmetry has limited the action of the spatial gra-
dients of the fluid velocity to the traceless symmetric rate-of-shear
tensor

ðSÞab ¼
1
2
raub þrbuað Þ �

1
3
ðr � uÞ dab: (20d)

It is worth remarking that this expression is the most natural one, as
compared to the standard approach where the form of Fick’s law is
anticipated with the introduction of the gradients of concentration
xi ¼ ni=n instead of the gradients of ni. However, this usual approach
leads to difficulties in the subsequent derivations since the concentra-
tions xi are linearly dependent. To our knowledge, Snider13 was the
first to follow the route of independent particle density ni, which we
shall develop in this paper for its much simpler framework.

D. Solution of the linearized Boltzmann equation

The first argument to put forward when solving the linearized
Boltzmann equation is that space and time variables, r and t, do not
appear explicitly in Eqs. (18)–(20). The solution depends on them
through the macroscopic variables only: niðt; rÞ; Tðt; rÞ, and uðt; rÞ.

The second argument concerns the velocity variable v of the
distribution functions fi, which only appears in the combination
c ¼ v � u in Eq. (20). In Eq. (19), changing v for c just amounts to
warrant the Galilean invariance of the binary collisions. As a

consequence, the distribution functions fi depend on velocity through
the variable c.

Since the gradients of the partial densities ni, of the fluid velocity
u, and of the temperature T are all independent, it is tempting to look
for solutions in each case when only one gradient exists. We shall
work out in detail the case of the temperature gradient to highlight the
main arguments. In this case, the linearized Boltzmann equation reads

X
j

I /T
i ;/

T
j

h i
ðciÞ ¼ Mi

mic2i
2kT
� 3
2
�mi

m

� �
ci � r logT; (21a)

where we note this peculiar solution for /i as /T
i . Actually, the differ-

ent components of the temperature gradient are also independent, and
focusing on one component ra logT along the a ¼ x; y; or z direc-
tion, it is clear that the solution /T

i must be proportional to this com-
ponent of the gradient, for all the species. Therefore, the solution is of
the form

/T
i ðcÞ ¼ KT

i ðcÞ � r logT; (21b)

and the vectorial function KT
i is solution to

X
j

I KT
i ;K

T
j

h i
ðciÞ ¼ Mi

mic2i
2kT
� 3
2
�mi

m

� �
ci: (21c)

Now, the rotational invariance of the Boltzmann collision operator
implies that (see Appendix B 4)

KT
i ðcÞ ¼ �KT

i ðcÞ c; (21d)

where the minus sign has been added to anticipates the counteraction
of the heat flux q to the gradient of temperature T.

Similarly, when only the rate-of-shear tensor S exists, the peculiar
solutions /S

i are all proportional to it, and of the form

/S
i ðcÞ ¼ KS

i ðcÞ : S; (22a)

where the tensorial function KS
i is solution toX

j

I
�
KS

i ;K
S
j

�
ðciÞ ¼ Mi

mi

kT
ci � ci; (22b)

and rotational invariance implies that

KS
i ðcÞ ¼ �KS

i ðcÞ ci � ci; (22c)

where the minus sign has been added to anticipates the counteraction
of the momentum flux P to the gradients of fluid velocity u.

When the gradient of a peculiar species density nk only exists, the
solutions /k

i are all proportional to it, and is of the form

/k
i ðcÞ ¼ Kk

i ðcÞ � rnk; (23a)

with the vectorial function Kk
i solution to

X
j

I Kk
i ;K

k
j

h i
ðciÞ ¼ Mi

1
ni

dik �
mini
q

� �
ci; (23b)

and of the form

Kk
i ðcÞ ¼ �Kk

i ðcÞ c; (23c)
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due to rotational invariance, with a minus sign to anticipate the coun-
teraction of the diffusive mass fluxUi to the gradient of density ni.

Thanks to the linearity of the collision integrals I, one gets

I /T
i þ /S

i þ /k
i ; /T

j þ /S
j þ /k

j

h i
¼ I /T

i ;/
T
j

h i
þ I /S

i ;/
S
j

h i
þ I /k

i ;/
k
j

h i
;

and /i ¼ /T
i þ /S

i þ
P

k /k
i is a solution when all the gradients are

present. We shall assume that this solution exists and is unique pro-
vided that it satisfies the constraints Eq. (15).

Consequently, the solution to the linear system of equations, Eqs.
(18)–(20), is, therefore, of the following form:

/i ¼ �KT
i ðcÞ c � r logT

�KS
i ðcÞ c� c : S

�
X
k

Kk
i ðcÞ c � rnk: (24)

The constraints of the Chapman–Enskog ansatz, Eq. (15), trans-
late into the following constraints on the functions KT, KS, and Kk:ð

MiðcÞKS
i ðcÞ c2 d3c ¼ 0; (25a)

X
i

mi

ð
MiðcÞKT

i ðcÞ c2 d3c ¼ 0; (25b)

X
i

mi

ð
MiðcÞKk

i ðcÞ c2 d3c ¼ 0; (25c)

X
i

mi

ð
MiðcÞKS

i ðcÞ c4 d3c ¼ 0: (25d)

Traditionally, the unknown functions KT
i ; K

S
i , and Kk

i are devel-
oped on a basis of Sonine polynomials, since at the time of these devel-
opments the digital computer was not discovered yet. We shall not
dwell with the solution of this system, but we shall assume known the
solution and derive its relationship with the closure of fluid equations.

IV. NAVIER–STOKES EQUATIONS

With the solution of the linearized Boltzmann equation expressed
as a function of the gradients of densities ni, fluid velocity u, and tem-
perature T, Eq. (24), the closure relations of the fluid equations, Eqs.
(5e), (6b), and (7c), can be computed as functions of these gradients.
The final results represent the constitutive relations known as Fick’s law,
Fourier’s law, and Newton’s law, with their associated transport coeffi-
cients of diffusion, thermal conductivity, and viscosity, respectively.

As a first step, it is useful to compute the rate of entropy produc-
tion in order to identify the different dissipation mechanisms that
involve the transport coefficients.

A. H-theorem and rate of entropy production

Boltzmann generalized the thermodynamic concept of entropy S
to non-equilibrium situations through theH functional, defined by

H ¼ � S
k
¼
X
i

ð
fi log fi d

3vi: (26)

The rate of entropy production CS, in k unit, is

CS ¼ �
dH
dt
¼ �

X
i

ð
ðlog fi þ 1Þ dfi

dt
d3vi; (27a)

where the substantial time derivative dfi=dt ¼ @t fi þ vi � rfi can be
replaced by the collision integrals of Boltzmann equation to give

CS ¼ �
X
i;j

ð
ðlog fiðviÞ þ 1Þ J fi; fj

� �
ðviÞ d3vi: (27b)

The rate of entropy production CS involve a summation over every
binary collision of the moment of the collision integral with the func-
tion KðvÞ ¼ log fiðvÞ þ 1. As in Sec. II B, Eq. (3), and Appendix B 2, it
can be rewritten as

CS ¼
1
4

X
i;j

ð
ðlog f 0i f 0j � log fifjÞðf 0i f 0j � fifjÞ

� vij 2p b db d3vj d
3vi: (27c)

This expression is the proof of the H-theorem, related to the second prin-
ciple of thermodynamics stating that the entropy is an increasing func-
tion of time, whatever the process [since the function ðx � yÞðlog x
�log yÞ is always positive except for x¼ ywhere it vanishes].

We now examine the rate of entropy production for the solution
/i of the linearized Boltzmann equation, Eqs. (14) and (24). At first
order (e ¼ 0Þ, it vanishes since fi ¼ Mi is the Maxwellian distribution
function at thermodynamic equilibrium. At next order (e2), the colli-
sion operator J is linearized to I, Eq. (19), and the H-theorem reads

CS ¼ �
X
i;j

ð
/iðviÞ I /i;/j

� �ðviÞ d3vi
¼ 1

4

X
i;j

ð
Mi Mj ð/0i þ /0j � /i � /jÞ

� ð/0i þ /0j � /i � /jÞ
� vij 2p b db d3vj d

3vi: (28)

The last expression is clearly positive, as expected. In Appendix B 3, a
useful notation, called bracket integral, was introduced for the summa-
tion over every binary collisions of the moments of the linearized colli-
sion integral

G� F½ � ¼ �
X
i;j

ð
GiðviÞ I Fi; Fj½ �ðviÞ d3vi

¼ 1
4

X
i;j

ð
Mi Mj ðG0i þ G0j � Gi � GjÞ

� ðF0i þ F0j � Fi � FjÞ
� vij 2p b db d3vj d

3vi

¼ �
X
i;j

ð
FiðviÞ I Gi;Gj½ �ðviÞ d3vi

¼ F � G½ �: (29a)

This functional is also a bilinear form

G� ðF1 þ F2Þ½ � ¼ G� F1½ � þ G� F2½ �: (29b)

Clearly, the rate of entropy production can be expressed shortly using
this notation as
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CS ¼ /� /½ �: (30a)

In order to isolate the contributions of the different gradients of densi-
ties ni, fluid velocity u, and temperature T, we further substitute the
expression of / given by Eq. (24), under the shortcut form

/ ¼ /T þ /S þ
X
k

/k: (30b)

This leads to

CS ¼ /T � /T
� �

þ /S � /S
� �

þ
X
k;l

/k � /l
� �

þ 2 /T � /S
� �

þ
X
k

/k � /T
� �

þ
X
k

/k � /S
� �� �

: (30c)

The evaluation of each term is given in Appendix E with the following
results:

/T � /T
� �

¼ 1
3

KT � KT½ � jr logTj2; (30d)

/S � /S
� �

¼ 2
15

KS : KS
h i

S : S; (30e)

/k � /l
� �

¼ 1
3

Kk � Kl½ � rnk � rnl; (30f)

/T � /S
� �

¼ 0; (30g)

/k � /T
� �

¼ 1
3

Kk � KT½ � rnk � r logT; (30h)

/k � /S
� �

¼ 0; (30i)

with obvious generalizations of the � notation in the bracket integrals
to the scalar product for vectors and to the tensor reduction (see
Appendix B 3). The coefficients of the different gradients are related to
the thermal conductivity, the viscosity, the diffusion, and the thermal
diffusion, respectively.

B. Thermal and mass diffusions

By introducing in the definition of the peculiar velocityUi of spe-
cies i, Eq. (5e), the expression of the distribution functions, Eqs. (14)
and (24), we identify the coefficients of mass diffusion Dij and thermal
diffusion DTi

niUi ¼
ð
cMiðcÞ/iðcÞ d3c

¼ �
ð
cMiðcÞKT

i ðcÞ c � r logT d3c

�
ð
cMiðcÞKS

i ðcÞ c� c : S d3c

�
X
j

ð
cMiðcÞKj

i ðcÞ c � rnj d3c

¼ �ni DTir logT �
X
j

Dijrnj; (31)

where the term involving KS
i vanishes as the integral of an odd func-

tion of c, and

niDTi ¼ �
1
3

ð
MiðcÞKT

i ðcÞ � c d3c

¼ 4p
3

ð1
0
MiðcÞKT

i ðcÞ c4 dc; (32)

Dij ¼ �
1
3

ð
MiðcÞKj

iðcÞ � c d3c

¼ 4p
3

ð1
0
MiðcÞKn

ij ðcÞ c4 dc; (33)

where Eq. (F1) has been used.
These coefficients are not independent but respect the following

sum rules: X
i

miDij ¼ 0; (34a)

X
i

miniDTi ¼ 0: (34b)

Indeed, by using qu ¼
P

i qiui and Ui ¼ ui � u, to sum over the spe-
cies the mass conservation equations of each species, Eq. (5)

@tqi þr � qiuð Þ þ r � qiUið Þ ¼ 0; (35a)

one recovers the total mass conservation

@tqþr � quð Þ ¼ 0: (35b)

This translates to the following constraint on the transport
coefficients,

0 ¼
X
i

qiUi ¼
X
i

miniUi

¼ �
X
ij

miDijrnj �
X
i

miniDTir logT; (35c)

that should be verified whatever the values taken by the different
gradients.

The last step is to make contact with the rate of entropy produc-
tion. To this end, we evaluate the following bracket integrals:

Kl � Kk½ � ¼ �
X
i;j

ð
Kl
iðciÞ � I Kk

i ;K
k
j

h i
ðciÞ d3ci

¼ �
X
i

ð
Mi

1
ni

dik �
mini
q

� �
Kl
i � ci d3ci

¼ 3
Dkl

nk
� 3

q

X
i

miDil

¼ 3
Dkl

nk
; (36)

using Eqs. (23b), (33), and (34). Due to the symmetry of the bracket
integrals, this results in the symmetry property

Dij

ni
¼ Dji

nj
¼ 1

3
Ki � Kj½ �: (37)

Likewise, we evaluate the bracket integrals
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KT � Kk½ � ¼ �
X
i;j

ð
KT
i ðciÞ � I Kk

i ;K
k
j

h i
ðciÞ d3ci

¼ �
X
i

ð
Mi

1
ni

dik �
mini
q

� �
KT
i � ci d3ci

¼ 3DTk �
3
q

X
i

miniDTi

¼ 3DTk; (38)

using Eqs. (23b), (32), and (34). Due to the symmetry of the bracket
integrals, we shall use the following property in the evaluation of the
heat flux:

DTi ¼
1
3

KT � Ki½ � ¼ 1
3

Ki � KT½ �: (39)

C. Viscosity

We proceed by introducing in the definition of the pressure ten-
sor, (6b), the expression of the distribution functions, Eqs. (14) and
(24), to identify the coefficient of viscosity g

P � p Id ¼
X
i

mi

ð
c� cMiðcÞ/iðcÞ d3c

¼ �
X
i

mi

ð
c� cMiðcÞKT

i ðcÞ c � r logT d3c

�
X
i

mi

ð
c� cMiðcÞKS

i ðcÞ c� c : S d3c

�
X
ij

mi

ð
c� cMiðcÞKj

i ðcÞ c � rnj d3c

¼ �2 g S; (40)

where the terms involving KT
i and Kj

i vanish as integrals of an odd
function of c, and

g ¼ � 1
15

X
i

mi

ð
MiðcÞKS

i ðcÞ : c� c d3c

¼
X
i

mi

2
8p
15

ð1
0
MiðcÞKS

i ðcÞ c6 dc; (41)

where Eq. (F2) has been used.
The connection with the rate of entropy production is made by

evaluating the bracket integral

KS : KS
h i

¼ �
X
i;j

ð
KS

iðciÞ : I
h
KS

i ;K
S
j

i
ðciÞ d3ci

¼ �
X
i

ð
Mi

mi

kT
KS

i : ci � ci d
3ci ¼

15
kT

g; (42)

using Eqs. (23b), (32), and (34). This last expression warrants that the
coefficient of viscosity is positive.

D. Thermal conductivity

When introducing in the definition of the heat flux, Eq. (7c), the
expression of the distribution functions, Eqs. (14) and (24), there are

different choices for the definition of the coefficient of thermal con-
ductivity. We choose the one coming from the rate of entropy produc-
tion, which is formally identical in both cases of the mixtures and the
pure elements. The first step here consists in evaluating the bracket
integral

KT � KT½ � ¼ �
X
i;j

ð
KT
i ðciÞ � I KT

i ;K
T
j

h i
ðciÞ d3ci

¼ �
X
i

ð
Mi

mic2i
2kT
� 3
2
�mi

m

� �
KT
i � ci d3ci; (43)

and comparing it with the definition of the heat flux

q ¼
X
i

ð
1
2
mic

2 cMiðcÞ/iðcÞ d3c;

¼ �
X
i

ð
1
2
mic

2 cMiðcÞKT
i ðcÞ c � r logT d3c

�
X
i

ð
1
2
mic

2 cMiðcÞKS
i ðcÞ c� c : S d3c

�
X
i;j

ð
1
2
mic

2 cMiðcÞKj
i ðcÞ c � rnj d3c

¼ 3
2
kT
X
i

niUi � krT � kT
X
j

DjT rnj; (44)

where the term involving KS
i vanishes as the integral of an odd func-

tion of c, and

k ¼ k
3

KT � KT½ �

¼ 4pk
3

X
i

ð1
0
Mi

mic2

2kT
� 3
2
�mi

m

� �
KT
i ðcÞ c4 dc; (45)

where Eq. (F1) has been used. This last expression warrants that the
coefficient of thermal conductivity is positive.

The remaining terms of the heat flux are

qþ krT ¼ �
X
i

ð
kT

3
2
þmi

m

� �
cMiðcÞKT

i ðcÞ c � r logT d3c

�
X
i;j

ð
1
2
mic

2 cMiðcÞKj
i ðcÞ c � rnj d3c; (46a)

where we introduce the mass flux Ui as expressed in Eq. (31) and
recalled here

niUi ¼ �
ð
cMiðcÞKT

i ðcÞ c � r logT d3c

�
X
j

ð
cMiðcÞKj

i ðcÞ c � rnj d3c;

leading to
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qþ krT ¼ 3
2
kT
X
i

niUi þ
kT
m

X
i

nimiUi

þ 3
2
kT
X
i;j

ð
cMiðcÞKj

i ðcÞ c � rnj d3c

þ kT
m

X
i;j

mi

ð
cMiðcÞKj

i ðcÞ c � rnj d3c

�
X
i;j

ð
1
2
mic

2 cMiðcÞKj
i ðcÞ c � rnj d3c: (46b)

Recall the constraint related to the total mass conservation, Eq. (35c),
i.e.,
P

i miniUi ¼ 0. Then, one is left with

qþ krT � 3
2
kT
X
i

niUi

¼ �kT
X
i;j

ð
mic2

2kT
� 3
2
�mi

m

� �

� cMiðcÞKj
i ðcÞ c � rnj d3c

¼ � kT
3

X
j

Kj � KT½ �rnj ¼ �kT
X
j

DTjrnj; (46c)

using Eq. (F1) and the symmetry of the bracket integrals, Eq. (39).

V. EMERGENCE OF PHENOMENA
IN MULTICOMPONENT MIXTURES

We shall see, in this section, how new dissipative phenomena
appear as the number of components in a mixture increases from the
case of pure elements, to binary mixtures, and beyond three species.
For a fluid made of only one component, there are only the transport
coefficients of viscosity g and thermal conductivity k. For a mixture,
there appear additional transport coefficients of thermal diffusion DTi

and mutual diffusion Dij. For mixtures with more than two compo-
nents, the interdiffusion coefficients Dij exhibit complex behaviors that
goes beyond Fick’s law in its simple form.

A. Pure elements

For pure elements, the Boltzmann equation involves only one
distribution function f ðt; r; vÞ. The peculiar velocity ui coincides with
the fluid velocity u, Ui ¼ ui � u ¼ 0. The driving force, in the
Chapman–Enskog formulation, no longer involves the density
gradient

1
M
ð@tM þ v � rMÞ ¼ mc2

2kT
� 5
2

� �
c � r logT þ m

kT
c� c : S;

(47)

and the mass conservation equation reduces to the total mass conser-
vation equation. This equation is also valid for mixtures

@tqþr � quð Þ ¼ 0: (48)

The momentum conservation equation is already of a form valid
for mixtures

@tðquÞ þ r � qu� uþP
� � ¼ 0; (49a)

with Newton’s constitutive relation for the pressure tensor

P ¼ p Id � 2 g S: (49b)

The energy conservation equation is the one most affected by the
emergence of new dissipative phenomena. This energy dissipation
emerges through the heat flux q. For pure elements, this flux is given
by Fourier’s constitutive relation

qpure ¼ �krT: (50a)

To highlight the emergence of the dissipative phenomena in a mixture,
we explicit the heat flux in the energy conservation equation, which is
given here for pure elements

@tE þr � E uþP � u� krT� � ¼ 0: (50b)

B. Binary mixtures

In the case of the binary mixtures, the total mass conservation
equation can be replaced by the species mass conservation equations

@tq1 þr � q1uð Þ þ r � q1U1ð Þ ¼ 0;

@tq2 þr � q2uð Þ þ r � q2U2ð Þ ¼ 0;
(51a)

with the closure relations

q1U1 ¼ �m1D11rn1 �m1D12rn2 � q1 D1T r logT;

q2U2 ¼ �m2D21rn1 �m2D22rn2 � q2 D2T r logT:
(51b)

However, all the coefficients of interdiffusion Dij and thermal diffusion
DTi are not independent. They obey the sum rules, Eq. (34), which read

m1D11 þm2D21 ¼ 0;

m1D12 þm2D22 ¼ 0;

q1D1T ¼ �q2D2T ¼ qDT ;

(51c)

where we have defined a unique coefficient of thermal diffusion, DT.
They also exhibit symmetry properties, Eq. (35b). In particular, one gets

D12=n1 ¼ D21=n2 ¼ �D=n; (51d)

where we have defined a unique coefficient of interdiffusion, D. With
these unique coefficients, the closure relations read

q1U1 ¼ �q2 D
rn1
n
þ q1 D

rn2
n
� qDT r logT;

q2U2 ¼ þq2 D
rn1
n
� q1 D

rn2
n
þ qDT r logT:

(51e)

As expected, one recovers

q2U2 ¼ �q1U1 ¼ �qU; (51f)

defining the peculiar velocity U. Fick’s law appears when expressing
the species densities ni in term of the concentrations xi ¼ ni=n since
in the binary mixture x2 ¼ 1� x1 andrx2 ¼ �rx1

q1U1 ¼ �qDrx1 � ðx1q2 � x2q1ÞD
rn
n
� qDT r logT;

q2U2 ¼ �qDrx2 þ ðx1q2 � x2q1ÞD
rn
n
þ qDT r logT:

(51g)

In this last equation, the terms proportional to the gradient of total
density lead to the barodiffusion when the equation of state is used to
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relate the total density to the pressure and the temperature. In the ideal
gas case, already used to derived the driving forces in Appendix D, one
gets

rn
n
¼ r log n ¼ r logP �r logT:

This gives rise to an additional contribution to the thermal diffusion.
The energy conservation equation is modified with respect to the

case of pure elements by the additional sources of dissipation appear-
ing in the heat flux

q ¼ �krT þ 3
2
kT

1
m1
� 1
m2

� �
qU

�kT qDT
1
m1

rn1
n1
� 1
m2

rn2
n2

� �
: (52a)

This can be interpreted as a failure of Fourier’s law. These contribu-
tions to the heat flux should not be omitted to prevent a loss of energy
conservation. For binary mixtures, the energy conservation equation
reads

@tE þr � E uþP � u� krT þ 3
2
kT

1
m1
� 1
m2

� �
qU

�

�kT qDT
1
m1

rn1
n1
� 1
m2

rn2
n2

� ��
¼ 0: (52b)

C. Ternary mixtures

For more than two species in a mixture, the formulation does not
change so much, but Fick’s constitutive relation must be generalized.
In its simple form where the mass flux of one species is proportional
to its own concentration gradient, it fails to predict some new diffusion
phenomena. To illustrate this breakdown, we consider the equations
of mass conservation for each species of a ternary mixture without the
presence of gradients of temperature and total density. This alleviates
the exposition. With these restrictions, the species mass conservation
equations reduce to

@tq1 þr � q1uð Þ þ r � q1U1ð Þ ¼ 0;

@tq2 þr � q2uð Þ þ r � q2U2ð Þ ¼ 0;

@tq3 þr � q3uð Þ þ r � q3U3ð Þ ¼ 0;

(53a)

with

q1U1 ¼ �m1D11rn1 �m1D12rn2 �m1D13rn3;
q2U2 ¼ �m2D21rn1 �m2D22rn2 �m2D23rn3;
q3U3 ¼ �m3D31rn1 �m3D32rn2 �m3D33rn3:

(53b)

The symmetry of the interdiffusion coefficients and their sum
rules write

D12=n1 ¼ D21=n2 ¼ �Dð12Þ=n;
D13=n1 ¼ D31=n3 ¼ �Dð13Þ=n;
D23=n2 ¼ D32=n3 ¼ �Dð23Þ=n;

(53c)

and

m1 D11 ¼ �m2 D21 �m3 D31;

m2 D22 ¼ �m1 D12 �m3 D32;

m3 D33 ¼ �m1 D13 �m2 D23:

(53d)

Altogether, only three coefficients of mutual diffusion are independent,
Dð12Þ; Dð13Þ, andDð23Þ. Therefore, the closure relations reduce to

q1U1¼� q2Dð12Þ þq3Dð13Þ
� �rx1þq1Dð12Þrx2þq1Dð13Þrx3;

q2U2¼� q1Dð12Þ þq3Dð23Þ
� �rx2þq2Dð12Þrx1þq2Dð23Þrx3;

q3U3¼� q1Dð13Þ þq2Dð23Þ
� �rx3þq3Dð13Þrx1þq3Dð23Þrx2;

(53e)

where additional terms appear besides the Fickian diffusion in its sim-
ple form (Ui proportional to rxi), leading to emerging processes of
osmotic diffusion, reverse diffusion, or diffusion barrier.7 To illustrate
these processes of diffusion in ternary mixtures, we consider the case
where two concentration gradients are equal and the case where one
of them vanishes.

1. Case A: $x25$x352$x1

In this case, the mass flux Fi ¼ qiUi of each species i can be writ-
ten under a simple form proportional to its own concentration gradi-
ent rxi, as in a binary mixture. Introducing an effective diffusivity Di

for species i, it reads

Fi ¼ �qDirxi; (54a)

where the effective coefficients Di are given by

D1 ¼ ðy1 þ y2ÞD12 þ ðy1 þ y3ÞD13½ �;
D2 ¼ ðy1 þ y2ÞD12 þ ðy3 � y2ÞD23½ �;
D3 ¼ ðy1 þ y3ÞD13 þ ðy2 � y3ÞD23½ �;

(54b)

where the mass concentration yi is defined by

yi ¼
qi

q
: (55)

Whereas species 1 always diffuses downhill in this case, uphill diffu-
sion is possible as well for species 2 or 3 whenever D2 or D3 becomes
negative. A barrier of diffusion can even appear for these species as
soon as D2 or D3 vanishes. For instance, the mass flux of species 2 is
inhibited if D2 ¼ 0 even though its concentration gradient exists
(rx2 6¼ 0).

2. Case B: $x352$x1 and $x250

In this case, the mass flux of each species is expressed as in case
A, except for species 2 for which we choose to use the concentration
gradient of species 1 as follows:

F2 ¼ �qD2rx1: (56a)

The effective coefficientsDi are given by

D1 ¼ � ðy1 þ y3ÞD13 þ y2D12½ �;
D2 ¼ �y2 D23 � D12½ �;

D3 ¼ � ðy1 þ y3ÞD13 þ y2D23½ �:
(56b)
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Downhill diffusion occurs for species 1 and 3, whereas species 2 dif-
fuses downhill or uphill according to the value of D2. This osmotic dif-
fusion is a process where diffusion of a species occurs even in the
absence of a gradient of its own concentration, but provided that other
species in the mixture present concentration gradient.

D. ICF applications

Very recently, the ICF program has taken an important step
forward the ignition quest.18–20 Ignition is a regime where the energy
produced by the fusion reactions between deuterium and tritium
(DT) outperforms the leakage due to thermal conduction and
Bremsstrahlung radiation so as to propagate the burn from the hot
spot to the remaining fuel. To reach this regime in ICF, the experimen-
tal setup consists in heating a gold cavity (named Hohlraum) by many
UV-laser beams to convert the incident energy into x-ray radiation
which in turn ablates the DT-filled capsule. This leads to the implosion
of the capsule by a rocket effect bringing mechanical work that com-
presses and heats the DT fuel.

In these recent experiments, a burning plasma regime was
achieved where the fusion energy was a heat source larger than the
mechanical work putting the configuration on the verge of ignition.
Many obstacles had to be challenged:21–23 the Rayleigh’ Taylor insta-
bilities and a degraded symmetry of implosion can lead to mix com-
pressed fuel with capsule material that rapidly cool it by enhanced
radiation leakage; the filling of the Holhraum by the expanding bub-
bles of laser-irradiated gold prevent the laser beams to propagate effi-
ciently; the backscatter of energy out of the Hohlraum by laser–plasma
interaction; and so on.

In the following numerical applications, we shall qualitatively
examine the role of multicomponent diffusion at the fuel–ablator
interface and in a Hohlraum filled with helium (He) gas to mitigate its
closure when expanding gold meets expanding capsule ablator. These
numerical applications need to estimate the diffusion coefficients in
thermodynamic conditions of high temperatures and varying densi-
ties. Several modelings of transport coefficients are available in the lit-
erature (see, for instance, Refs. 24–28). It is worth noticing that Kagan
and Baalrud29 provided Matlab routines to compute viscosity and heat
diffusion coefficients in the weakly coupled regime. We decided to use
the simplest modeling, the Pseudo-Ion in Jellium (PIJ) model,25 that
has been recently compared with molecular dynamics simulations of
many ternary mixtures, including the plastic compound of carbon and
hydrogen (CH), often chosen as ablator, mixed with silver (Ag)
impurities.30,31

1. Separated reactants

An interesting experiment was dedicating to assess any mix
between the DT fuel and the ablator.32 The idea was to separate the D
and T reactants in the experimental setup. The DT fuel was replaced
by a pure T gas, and a thin layer of CD was buried into the CH ablator.
Depending on the depth where this CD layer sits, the DT reactions
were observed or not. This was thought to be a good indicator of the
amount of CH ablator that mixes with the DT fuel. However, the most
convincing interpretation5 of the measurements requires to invoke
multicomponent diffusion. This interpretation evidence that the atoms
of D diffuse much more rapidly toward the T gas than the atoms of C.
This can be illustrated using the oversimplified situation of case A of

Sec. VC1. Indeed, one can assume that the gradients of concentration
of C and D are equal, at least as first approximation. Table II shows
that the diffusion coefficient of D is around 50 times higher than the
one of C, leading to a length of diffusion of D through T roughlyffiffiffiffiffi
50
p

� 7 times longer than the one of C.

2. He-filled Hohlraum

Another situation where multicomponent diffusion may be
important in a ternary mixture is the plasma collision between the
expansion of gold and of CH ablator within aHohlraum filled with He
gas.33 The presence of He is supposed to act as a cushion (“airbag”)
against Au and CH to prevent the plasma collision within the
Hohlraum and to leave room for the laser beams to propagate. Here, it
is the case B of Sec. VC2 that represents a pertinent albeit simplified
description, assuming a null gradient of concentration of He.
Interestingly, Table III indicates that, even without any He gradient,
there is a mass flux of He toward the ablator (assumed here to be pure
C to avoid examining a quaternary mixture). We think that this pro-
cess deserves more investigation and a more in-depth analysis.
Unfortunately, to our knowledge, this issue has not yet been addressed
in any hydrodynamic simulations inclusive of multicomponent
diffusion.

VI. CONCLUSION

The route, traced by Chapman and Enskog17 from the descrip-
tion of the binary collisions and the Boltzmann kinetic equations to
the Navier–Stokes equations, is a long one. However, it is very instruc-
tive to follow it in order to highlight the most important physical argu-
ments and assumptions.

TABLE II. Effective diffusion coefficients Di for a ternary mixture of T, C, and D, at
T¼ 1000 eV and q ¼ 50 g/cc. xi stands for number concentration, and yi for mass
concentration. Z is the atomic number, and A the molar mass. These coefficients
give the mass flux Fi ¼ �qDirxi , and are computed according to Eqs. (54b) (with
D12 ¼ 1:99; D13 ¼ 56:9, and D23 ¼ 2:50 cm2/s), in the peculiar situation of case A
where rxC ¼ rxD.

Species i Name Z A xi yi Di (cm2/s)

1 T 1 3 0.5 0.3 24.5
2 C 6 12 0.25 0.6 0.5
3 D 1 2 0.25 0.1 24.0

TABLE III. Effective diffusion coefficients Di for a ternary mixture of C, He, and Au, at
T¼ 200 eV and q ¼ 0:01 g/cc. xi stands for number concentration and yi for mass
concentration. Z is the atomic number and A the molar mass. These coefficients give
the mass flux Fi ¼ �qDirxi , except for F2 ¼ �qD2rx1, and are computed
according to Eqs. (56b) (with D12 ¼ 462; D13 ¼ 0:588, and D23 ¼ 0:986 cm2/s), in
the peculiar situation of case B whererxHe ¼ 0.

Species i Name Z A xi yi Di (cm2/s)

1 C 6 12 0.333 0.0563 9.22
2 He 2 4 0.333 0.0187 �8.63
3 Au 79 197 0.334 0.925 0.60
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The principal pillar of this edifice is the Knudsen number, e. Its
very definition is possible when the kinetic theory offers us the oppor-
tunity to define microscopic scales of time and space: the collision
time s and the mean free path k.

The criterion for reaching thermodynamic equilibrium can then
be formulated: one can consider in equilibrium a volume, which is
homogeneous over distances much larger than k and which is left out
any solicitations for a time much greater than s. This criterion applies
equally well out of the validity domain of the kinetic theory, at least in
order of magnitude.

With the Knudsen number, e, the assumption of small gradients
of the flow variables, which is invoked in the derivation from the ther-
modynamics of irreversible processes, becomes an operational crite-
rion, since it can be checked that the macroscopic scales of time and
length, T0 and L0, associated with these gradients, are indeed much
larger than s and k. The Euler equations can be used to estimate these
gradients, for this comparison.

If e is small, and the conditions of applicability of the kinetic the-
ory are met, the Boltzmann equations can be linearized with source
terms, known as driving forces, arising from the decoupling of orders
in e. These driving forces dictate the form of the general solution and
of the transport coefficients.

However, the edifice is very fragile. One often assumes that the
Knudsen number is small without further verification. The difficulties
can arise when the thermodynamic equilibrium is not complete.

In ICF, the ions and the electrons of the plasma must often be
considered at different temperatures, for instance. As discussed in the
seminal paper by Braginskii,34 this assumes that both distribution
functions of ions and electrons relax to two Maxwellians at different
temperatures, Ti and Te, quicker than the time required for the relaxa-
tion between Ti and Te. The fluid equations must, therefore, include
two equations for each energy of the ions and the electrons. As a result,
additional terms appear coming from the collision integrals evaluated
with Maxwellians at Ti and Te. These terms warrant that the system
shall relax to a common temperature. In most situations, the resulting
Euler equations are then dominated by the time scale sie of tempera-
ture relaxation. Due to the large mass ratio between ions and electrons,
it is, however, possible to define a small Knudsen number in order to
get linearized Boltzmann equations with driving forces as the source
terms.35

In other circumstances, there is a decoupling of velocity. For
instance, when two fluids meet at different velocities. This has an
impact on the equations of momentum and energy conservation with
additional contributions coming from the collision integrals evaluated
with Maxwellians centered at different velocities. The issue of defining
a Knudsen number in this case is much more involved. Different
approaches are developed following either the thermodynamic route36

or the kinetic one37 and confronting the hydrodynamic approximation
to more detailed descriptions requiring microscopic simulations.
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APPENDIX A: BINARY COLLISIONS

Assume each collision between two particles of masses mi and
mj can be assigned initial velocities vi and vj, and final velocities v0i
and v0j. Conservation equations of momentum and energy then read

mivi þmjvj ¼ miv0i þmjv0j;

1
2
miv

2
i þ

1
2
mjv

2
j ¼

1
2
miðv0iÞ

2 þ 1
2
mjðv0jÞ

2:
(A1)

At this point, system (A1) represents four equations whereas there
are six unknowns v0i and v0j. Some additional information is then
required. This information concerns what kind of interaction exists
between the particles.

Consider that the two particles interact via a central force field
FðrÞ, deriving from a potential EPðrÞ, so that

FðrÞ ¼ �rEP: (A2)

Their motion follows Newton’s law

mi
d2ri
dt2
¼ Fðjri � rjjÞ;

mj
d2rj
dt2
¼ �Fðjri � rjjÞ:

(A3)

The trajectory of both particles during the collision is easily derived
in the center-of-mass (COM) frame, defined by COM (R, V) and
relative (r, v) coordinates

R ¼
miri þmjrj
mi þmj

; V ¼
mivi þmjvj
mi þmj

;

r ¼ ri � rj; v ¼ vi � vj:
(A4)

The Jacobian of the transformation from the laboratory to the COM
frames is equal to 1, so that in particular, d3vi d3vj ¼ d3v d3V: In
the COM frame, the equations of motion involve the reduced mass
mij ¼ mimj

miþmj
and read

mij
d2r
dt2
¼ mij

dv
dt
¼ FðrÞ (A5a)

for the relative motion, and

d2R
dt2
¼ dV

dt
¼ 0 (A5b)

for the COM motion. The latter equation expresses the momentum
conservation.

The vector product with r of Eq. (A5a) allows one to express
the angular momentum conservation and implies that the trajectory
lies in a plane perpendicular to the angular momentum ðmijr� vÞ

r�mij
d2r
dt2
¼ d

dt
mijr�

dr
dt

� �
¼ r� FðrÞ ¼ 0: (A6a)

In the polar coordinates ðr; hÞ depicted in Fig. 1, the position of the
relative motion must verify the following constraint:
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mij r
2 dh
dt
¼ mij b v1; (A6b)

where b is the impact parameter, the minimal distance between the
particles if they do not interact and move in straight lines, and v1 is
the relative velocity before collision. Indeed, at large distance before
collision, the relative position r ¼ x ex þ b ey , and the relative veloc-
ity vij ¼ v1ex , for a cartesian system where the x-axis is along the
initial relative velocity, and ey ¼ ez � ex with ez ¼ ðvi � vjÞ=vivj, a
unit vector perpendicular to the trajectory plane.

The scalar product with v ¼ dr=dt of Eq. (A5a) allows one to
express the energy conservation

dr
dt
�mij

d2r
dt2
¼ d

dt
1
2
mij

dr
dt
� dr
dt

� �
¼ dr

dt
� FðrÞ (A7a)

with

dr
dt
� FðrÞ ¼ � dr

dt
� rEP ¼ �

dEP
dt

: (A7b)

This translates in polar coordinates to the second constraint

1
2
mij

dr
dt

� �2

þ r2
dh
dt

� �2
" #

þ EPðrÞ ¼
1
2
mijv

2
1: (A7c)

A first consequence of the latter equation is that the relative
velocity is conserved in modulus, equal to v1. The only change pro-
duced by the elastic collision is to rotate this vector by an angle v,
the scattering angle (Fig. 1). In the Cartesian frame, the relative
velocity before collision is

vij ¼ v1 ex; (A8a)

and it is

v0ij ¼ v1 cos ðvÞ ex þ sin ðvÞ ey
� �

(A8b)

after collision.
The velocities in the laboratory frame are given inverting Eq.

(A4). Before collision, one can write the following relations:

vi ¼
mj

mi þmj
vij þ V; vj ¼ �

mi

mi þmj
vij þ V; (A9a)

while after collision,

v0i ¼
mj

mi þmj
v0ij þ V; v0j ¼ �

mi

mi þmj
v0ij þ V: (A9b)

We point out here that a relation between the scattering angle
v and the impact parameter b can be obtained once the trajectory is
parameterized through the relation between the radius r and the
angle h (or v). Indeed, using Eqs. (A6b) and (A7c) to express sepa-
rately the derivatives with time of the relative position r and of the
angle h, one gets

dh
dt
¼ b v1

r2
; (A10a)

dr
dt

� �2

¼ v21 1� b2

r2
�WðrÞ

� �
; (A10b)

with

WðrÞ ¼ EPðrÞ
1
2
mijv

2
1

: (A10c)

We then define the turning point r0 that cancels dr/dt. It is the
point of closest approach along the trajectory, solution to

1� b2

r20
�Wðr0Þ ¼ 0: (A11)

It is convenient to define the origin of time t and angle h at the
turning point. Indeed, the trajectory is symmetric with respect to
this point, with a value of the angle h ¼ �h0 before collision, when
t ! �1 and h ¼ þh0 after collision, when t ! þ1. The deflec-
tion angle v is then given by

v ¼ vðb; v1Þ ¼ p� 2h0: (A12a)

To compute the trajectory from t¼ 0 to þ1, an equation can
be derived between the variations of the radius r and the angle h
using Eqs. (A10)

dr
dh
¼ r2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

r2
�WðrÞ

r
: (A12b)

Integrating the inverse relation giving dh=dr from the turning point
r0 to1 gives the angle h0 directly related to the deflection angle v

h0 ¼
ð1
r0

1
r2

bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

r2
�WðrÞ

r : (A12c)

As expected, this relation depends on the type of interaction
between the particles, through the potential energy EPðrÞ. It
depends also on the relative velocity of the particles v1.

When introducing Boltzmann’s equation, we shall use
Liouville’s law, which expresses that the Jacobian of the transforma-
tion from the laboratory to the COM frames is equal to 1, in partic-
ular for velocities before and after collisions

d3vi d
3vj ¼ d3vij d

3V ¼ d3v0ij d
3V ¼ d3v0i d

3v0j: (A13)

APPENDIX B: BOLTZMANN COLLISION INTEGRAL

1. Empirical derivation

Boltzmann gave an empirical derivation of his kinetic equation
by considering the net effect between the collisions depleting the

FIG. 1. Trajectory of a binary collision in the center of mass frame.

Physics of Plasmas TUTORIAL scitation.org/journal/php

Phys. Plasmas 29, 090901 (2022); doi: 10.1063/5.0088013 29, 090901-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


distribution function at a given velocity and the inverse collisions
replenishing the distribution.

In a fluid, being a dilute gas or a plasma, many binary collisions
have to be considered. In Appendix A, it is shown that a binary colli-
sion can be defined by the initial velocities vi and vj of the two colliding
particles of species i and j and by their impact parameter b. Equation
(A9b) gives the final velocities v0i and v0j in this collision. We shall com-
pute the rate of these collisions, Cij d3vi d3vj db in the fluid.

It is helpful to consider each particle as a target for the colli-
sions with the other particles, considered as projectiles. These pro-
jectiles are characterized by the velocity distribution function
fi ¼ f ðt; r; viÞ, such that ðfid3viÞ gives the number of particles of
mass mi with velocity between vi and vi þ d3vi, per unit volume, at
time t and position r. Now consider a flux of these particles, Fij,
incident onto a single scattering target of velocity vj, and mass mj,
located at r at time t, it is given by

Fij ¼ ðfid3viÞ vij: (B1a)

Figure 1 illustrates, in the COM frame, that the number _N ðvÞ dv of
particles scattered per unit time between v and vþ dv, i.e., of veloc-
ities v0i, is equal to the number of incident particles per unit time
between b and b þ db, with b related to v by Eq. (A12), that is,

_N ðvÞ dv ¼ 2p b db Fij: (B1b)

The rate of collisions, Cij d3vi d3vj db, must also account for the
number ðfjd3vjÞ of scattering targets of mass mj and velocity
between vj and vj þ d3vj, located at r at time t

Cij d
3vi d

3vj db ¼ ðfjd3vjÞ _N ðvÞ dv; (B1c)

so that finally one gets

Cij d
3vi d

3vj db ¼ ðfid3viÞðfjd3vjÞ vij 2p b db: (B1d)

Consider now the collisions with initial velocities v0i and v0j that
restore, as final velocities, vi and vj, with a rate equals to

C0ij d
3v0i d

3v0j db ¼ ðf 0id3v0iÞðf 0jd3v0jÞ vij 2p b db; (B2)

where f 0i ¼ f ðt; r; v0iÞ, and we use the fact that v0ij ¼ vij. Moreover,
for elastic collisions, Liouville’s law, Eq. (A13), states that

d3v0i d
3v0j ¼ d3vi d

3vj: (B3)

The two rates are, therefore, equal at equilibrium, when the velocity
distribution functions are Maxwellian, since then f 0if

0
j ¼ fifj due to

the conservation of energy in each binary collision, Eq. (A1). Out of
equilibrium, the net rate of production of particles with velocity vi
(from all the collisions with species j) per unit of phase space is the
Boltzmann collision integral

J fi; fj
� �

ðviÞ ¼
ð

C0ij � Cij

	 

d3vj db;

¼
ð
ðf 0i f 0j � fifjÞ vij 2p b db d3vj: (B4)

2. Moments

Consider an arbitrary function KðvÞ and the integral

Ji K; fi; fj
� �

¼
ð
KðviÞ J fi; fj

� �
ðviÞ d3vi

¼
ð
Kiðf 0i f 0j � fifjÞ vij 2pb db d3vid3vj: (B5)

Now by changing variables from initial to final velocities, one gets

Ji K; fi; fj
� �

¼
ð
K 0i ðfifj � f 0i f

0
j Þ v0ij 2pb db d3v0id3v0j

¼
ð
K 0i ðfifj � f 0i f

0
j Þ vij 2pb db d3vid3vj

¼ 1
2

ð
ðKi � K 0i Þ ðf 0i f 0j � fifjÞ vij 2pb db d3vid3vj (B6)

due to Liouville’s law for elastic collisions, Eq. (A13).
When this is summed over species i and j, the indexes become

dummy and the following relations hold:

J K½ � ¼
X
i;j

Ji K; fi; fj
� �

¼ 1
2

X
i;j

ð
ðKi � K 0i Þ ðf 0i f 0j � fifjÞ vij 2pb db d3vid3vj

¼ 1
2

X
j;i

ð
ðKj � K 0j Þ ðf 0j f 0i � fjfiÞ vji 2pb db d3vjd3vi

¼ 1
4

X
i;j

ð
ðKi þ Kj � K 0i � K 0j Þ ðf 0i f 0j � fifjÞ

� vij 2pb db d
3vid

3vj: (B7)

Equations (B6) and (B7) are used in Sec. II B to introduce the colli-
sional invariants KðvÞ ¼ m;m v;mv2=2 which verify J½K� ¼ 0.

3. Linearized operator

In thermodynamic equilibrium, the velocity distribution func-
tions fiðvÞ are Maxwellian, equal to MiðvÞ, and the Boltzmann colli-
sion integrals vanish due to the conservation of energy in each
binary collision, Eq. (A1), leading to M0i M

0
j ¼ Mi Mj. Close to equi-

librium, the distribution functions are slightly perturbed, of the
form MiðvÞ ð1þ e /iðvÞÞ, where e is the Knudsen number (see Sec.
III A), and the /i are solution to the linearized Boltzmann equa-
tions, Eq. (18). In these equations, the Boltzmann collision integrals
J½fi; fj�ðviÞ reduce to linearized collision integrals I½/i;/j�ðviÞ

J Mi ð1þ e /iÞ;Mj ð1þ e /jÞ
� �

ðviÞ ¼ e I /i;/j
� �ðviÞ; (B8)

at first order in e, with

I /i;/j
� �ðviÞ ¼

ð
MiMj ð/0i þ /0j � /i � /jÞ vij 2p b db d3vj: (B9)

In the derivations of Sec. III D, the solutions /i involve vectorial
and tensorial fields: K and K . It is then useful to extend, compo-
nentwise, the definition of the linearized Boltzmann collision inte-
grals to these fields,

I Ki;Kj½ �ðviÞ ¼
ð
MiMj ðK0i þ K0j � Ki � KjÞvij 2p b db d3vj (B10)

representing a vectorial field, and
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I K
i
;K

j

h i
ðviÞ ¼

ð
MiMj ðK 0iþK

0
j
� K

i
� K

j
Þvij 2p b db d3vj

(B11)

representing a tensorial field.
The moments of the collision operator J defined in Sec. B 2

can also be defined for the linearized operator I. They exhibit the
same properties with respect to the collisional invariants KðvÞ
¼ m;m v;mv2=2 with I½K� ¼ 0. Of particular interest is the expres-
sion of the moment of a function KðvÞ summed over all pairs of
species

I K½ � ¼
X
i;j

ð
KðviÞ I /i;/j

� �ðviÞ d3vi
¼ 1

4

X
i;j

ð
ðKi þ Kj � K 0i � K 0j Þ ð/0i þ /0j � /i � /jÞ

� vij 2pb db d
3vid

3vj: (B12)

Indeed, the expression of ð�I½K�Þ is a symmetric functional of the
functions KðvÞ and /ðvÞ. This is generalized by the definition of
the bracket integrals ½G� F�

G� F½ � ¼ �
X
i;j

ð
GiðviÞ I Fi; Fj½ �ðviÞ d3vi

¼ 1
4

X
i;j

ð
Mi Mj ðG0i þ G0j � Gi � GjÞ

� ðF0i þ F0j � Fi � FjÞ
� vij 2p b db d3vj d

3vi: (B13a)

This functional is symmetric

G� F½ � ¼ F � G½ �: (B13b)

It is also a bilinear form

G� ðF1 þ F2Þ½ � ¼ G� F1½ � þ G� F2½ �: (B13c)

The following generalizations to vectorial and tensorial fields read:

G � F½ � ¼ �
X
i;j

ð
GiðviÞ � I Fi;Fj½ �ðviÞ d3vi

¼ 1
4

X
i;j

ð
Mi Mj ðG0i þ G0j � Gi � GjÞ

� ðF0i þ F0j � Fi � FjÞ
� vij 2p b db d3vj d

3vi (B13d)

and

G : F
� � ¼ �X

i;j

ð
G

i
ðviÞ : I F

i
; F

j

h i
ðviÞ d3vi

¼ 1
4

X
i;j

ð
Mi Mj ðG0i þ G0j � G

i
� G

j
Þ

: ðF 0i þ F 0j � F
i
� F

j
Þ � vij 2p b db d3vj d

3vi:

(B13e)

4. Rotational invariance

The general form of the solution to the linearized Boltzmann
equation is given in Eq. (24) using an argument of rotational invari-
ance, which we describe in detail in this section.

Assume that we rotate the reference frame of velocities. We
note the functions of vectors with coordinates in the new frame
with a tilde, ~f ðvÞ, whereas the same functions in the old frame are
noted without tilde, f ðvÞ.

If the functions return a scalar, both are related by the matrix
of rotation ½R�, according to

~f ðvÞ ¼ f R�1½ � vð Þ; (B14)

where ½R�1� stands for the inverse rotation.
If the functions return a vector K, both are related according to

~KðvÞ ¼ R½ �K R�1½ � vð Þ: (B15)

First, we want to check that the Boltzmann collision operator J
is invariant under this rotation. In the new frame, it reads

~J ~f i;
~f j

h i
ðvÞ ¼ J fi; fj

� �
R�1½ � vð Þ

¼
ð

f 0i f
0
j � fifj

	 

jvj � R�1½ � vj 2p b db d3vj;

where fi ¼ fið½R�1� vÞ; f 0i and f 0j corresponding to the final collision
velocities. Now, with the change of variable uj ¼ ½R� vj one gets

~J ~f i;
~f j

h i
ðvÞ ¼ J ~f i;

~f j

h i
vð Þ; (B16)

since the binary collision is rotationally invariant (see Appendix A).
By the same line of arguments, the linearized Boltzmann colli-

sion operator I is also rotationally invariant. Since I is a linear oper-
ator, it can be extended to act componentwise on vector fields as
well. In these cases, the rotational invariance reads

~I ~Ki; ~Kj

h i
ðvÞ ¼ I ~Ki; ~K j

h i
vð Þ: (B17)

Furthermore, this extension of I to vector fields produces a vector F,
and the transformation from old to new frame is

F ¼ ~I ~Ki; ~K j

h i
ðvÞ ¼ R½ � I Ki;Kj½ � R�1½ � vð Þ: (B18)

Therefore, the rotational invariance implies in this case that

R½ �Ki R�1½ � vð Þ ¼ Ki vð Þ; (B19)

and the only admissible functional form of Ki is

Ki vð Þ ¼ KiðvÞ v; (B20)

where KiðvÞ is a function of the modulus of v.
The same reasoning applies to the componentwise extension

of the linearized Boltzmann collision operator I to tensor fields K
leading to the admissible solutions in the form

K
i
ðvÞ ¼ KiðvÞ v � v; (B21)

when the tensor resulting from the action of I is symmetric, of the
form F� F.
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APPENDIX C: MOMENTUM AND ENERGY EQUATIONS

The derivation of the momentum conservation equation pro-
ceeds by multiplying the Boltzmann by mivi, integrating in velocity,
and summing over all the species. Let us focus on the term

X
i

ð
d3vmivr � ðvfiÞ

" #
a

¼
X
i

mi

ð
d3v varcðvcfiÞ

¼ rc

X
i

mi

ð
d3v vc va fi

 !
; (C1a)

where Einstein’s rule of summation has been used (see Appendix G).
Now, remark that v ¼ uþ ðv � uÞ leads toð

d3v vcva fi ¼
ð
d3v ucua fi þ

ð
d3v ðvc � ucÞðva � uaÞ fi

þ
ð
d3v ucðva � uaÞ fi þ

ð
d3v ðvc � ucÞua fi

¼ ni u� uð Þca þ
ð
d3v ðvc � ucÞ ðva � uaÞ fi

þuc ðni uiÞa � ni uc ua þ ðni uiÞc ua � ni uc ua:

(C1b)

Recall that the fluid velocity u is defined by

q ua ¼
X
i

qiðuiÞa; (C1c)

so that, when summed over the species i, the contributions of the
last four terms vanish two by two. Finally, introduce the definition
of the pressure tensor P

P ¼
X
i

mi

ð
ðv � uÞ � ðv � uÞ fiðt; r; vÞ d3v; (C1d)

leads to the momentum conservation equation Eq. (6).
The energy conservation equation is established by multi-

plying the Boltzmann equation by miv2i =2, integrating in veloc-
ity, and summing over all the species. Let us focus on the term

X
i

ð
d3v

1
2
miv

2r � ðvfiÞ ¼
X
i

1
2
mi

ð
d3v v2rcðvcfiÞ;

¼ rc

X
i

1
2
mi

ð
d3v v2 vc fi

 !
; (C2a)

and remark that v ¼ uþ ðv � uÞ and v2 ¼ vava ¼ uaua

þ2uaðva � uaÞ þ ðva � uaÞðva � uaÞ leads to
ð
d3v v2 vc fi ¼

ð
d3v v2 ucfi þ

ð
d3v u2 ðvc � ucÞ fi

þ
ð
d3v 2uaðva � uaÞ ðvc � ucÞ fi

þ
ð
d3v ðv � uÞ2ðvc � ucÞ fi: (C2b)

The first term involves the energy density E

E ¼
X
i

ð
1
2
miv

2 fiðt; r; vÞ d3v ¼
1
2
qu2 þ 3

2
n kT: (C2c)

The second term leads to a vanishing contribution due to the defini-
tion of the fluid velocity, Eq. (C1c). The third term involves the
stress tensor P, Eq. (C1d). The last term involves the heat flux q

q ¼
X
i

ð
1
2
miðv � uÞ2ðv � uÞ fiðt; r; vÞ d3v: (C2d)

Grouping all the contributions leads to the energy conservation
equation (7).

APPENDIX D: DRIVING FORCES

The source terms of the linearized Boltzmann equation, Eq.
(18), are called driving forces since they eventually lead to the
expressions of the diffusive fluxes of mass, momentum, and energy,
with the appearance of the transport coefficients. We start the deri-
vation of the source terms with the following reformulation:

@tMi þ v � rMi ¼ Mi @t log ðMiÞ þ v � r log ðMiÞ½ �;

with

log ðMiÞ ¼ log ðniÞ �
3
2
log ðTÞ �miðv � uÞ2

2kT
þ constant: (D1a)

Consequently, it follows that

@t logðMiÞ¼ @t logðniÞþ
mic2

2kT
�3
2

� �
@t logðTÞþ

mi

kT
c �@tu;

v �r logðMiÞ¼ v �r logðniÞþ
mic2

2kT
�3
2

� �
v �r logðTÞ

þmi

kT
c�v :r�u;

(D1b)

where we have set c ¼ v � u. Let us develop the calculation leading
to the last term (see Appendix G for the notation)

v � rc2 ¼ varaðcbcbÞ ¼ 2 vacbracb ¼ �2 cbvaraub:

Then consider the Euler equations

@tqi þr � qiuð Þ ¼ 0; (D2a)

@tðquÞ þ r � qu� uþ p Id
	 


¼ 0; (D2b)

@tE þr � ðE þ pÞuð Þ ¼ 0; (D2c)

under this useful form

@tni þrðniuÞ ¼ 0; (D2d)

@tuþ ðu � rÞuþ
rp
q
¼ 0; (D2e)

@tðkTÞ þ u � rðkTÞ þ 2p
3n
r � u ¼ 0: (D2f)

The last equation for the time evolution of temperature is easily
derived once the following equation for the time evolution of kinetic
energy is established:
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@t
1
2
qu2

� �
þr � 1

2
qu2 u

� �
¼ �u � rp: (D2g)

Substituting the time derivatives directly leads to the driving forces
term expression

1
Mi
ð@tMi þ v � rMiÞ ¼ c � rni

ni
�r � uþ mic2

2kT
� 3
2

� �
c � rT

T

� mic2

2kT
� 3
2

� �
2p

3nkT
r � u

þmi

kT
c� c : r� u� mi

kT
c � rp

q
; (D3a)

which gives in the case of a ideal gas (p ¼ nkT)

1
Mi

@tMi þ v � rMið Þ ¼ c � rni
ni
�mi

m
rn
n

� �

þ mic2

2T
� 3
2
�mi

m

� �
c � rT

T

�mic2

3kT
r � uþ mi

kT
c� c : r� u: (D3b)

Finally, recall that n ¼
P

k nk, and evidence that the symmetric

traceless tensor c� c� 1
3 c

2Id
	 


acts on ðr � uÞ so that only the

symmetric traceless part ðSÞ of the tensor ðr � uÞ contributes to
the tensorial contraction

ðSÞab ¼
1
2
raub þrbuað Þ �

1
3
ðr � uÞ dab: (D3c)

Likewise, when the tensor S is used, the contraction with c� c gives
the same result. This little trick is useful to get more direct derivation

1
Mi
ð@tMi þ v � rMiÞ ¼

mic2

2kT
� 3
2
�mi

m

� �
c � r logT

þ mi

kT
c� c : S

þ 1
ni

X
k

dik �
mini
q

� �
c � rnk: (D3d)

APPENDIX E: BRACKET INTEGRALS

The rate of entropy production discussed in Sec. IVA involves
bracket integrals, which are developed in the following.

1. Temperature gradient

Related to the presence of a temperature gradient only, the rate
of entropy production involves the solution /T in the bracket
integral

/T � /T
� �

¼ �
X
i;j

ð
/T
i ðciÞ I /T

i ;/
T
j

h i
ðciÞ d3ci

¼ �
X
i

ð
/T
i ðciÞMi

mic2i
2kT
� 3
2
�mi

m

� �
ci � r logT d3ci;

(E1)

using Eqs. (21a). Now, /TðcÞ ¼ �KTðcÞ c � r logT is a scalar.
Therefore,

/T � /T
� �

¼
X
i

Vi � r logT (E2)

with

Vi ¼ �
ð

/T
i ðciÞMi

mic2i
2kT
� 3
2
�mi

m

� �
ci d

3ci

¼
ð
ci K

T
i ðciÞMi

mic2i
2kT
� 3
2
�mi

m

� �
ci � r logT d3ci

¼ 1
3
Vir logT; (E3)

using Eq. (F1) with

Vi ¼
ð
KT
i ðciÞ ci � ci Mi

mic2i
2kT
� 3
2
�mi

m

� �
d3ci

¼
X
j

ð
KT
i ðciÞ ci � I KT

i ;K
T
j

h i
ðciÞ d3ci

¼ �
X
j

ð
KT
i ðciÞ � I KT

i ;K
T
j

h i
ðciÞ d3ci; (E4)

using Eq. (21c). Finally, one gets

/T � /T
� �

¼ 1
3

X
i

Vijr logTj2

¼ 1
3
KT � KT½ �jr logTj2: (E5)

2. Velocity gradients

Related to the presence of velocity gradients only, the rate of
entropy production involves the solution /S in the bracket integral

/S � /S
� �

¼ �
X
i;j

ð
/S
i ðciÞ I /S

i ;/
S
j

h i
ðciÞ d3ci

¼ �
X
i

ð
/S
i ðciÞMi

mi

kT
ci � ci : S d3ci

¼
X
i

T i : S (E6)

with

T
i ¼ �

ð
/S
i ðciÞMi

mi

kT
ci � ci d

3ci

¼
ð
ci � ci K

S
i ðciÞMi

mi

kT
ci � ci : S
� �

d3ci ¼
2
15

Ti S (E7)

using Eq. (F2) with

Ti ¼
ð
KS
i ðciÞ ci � ci : ci � ci Mi

mi

kT
d3ci

¼
X
j

ð
KS
i ðciÞ ci � ci : I

h
KS

i
;KS

j

i
ðciÞ d3ci

¼ �
X
j

ð
KS

iðciÞ : I
h
KS

i;K
S
j

i
ðciÞ d3ci (E8)

Physics of Plasmas TUTORIAL scitation.org/journal/php

Phys. Plasmas 29, 090901 (2022); doi: 10.1063/5.0088013 29, 090901-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


using Eq. (22b). Finally, one gets

/S � /S
� �

¼ 2
15

X
i

Ti S : S ¼ 2
15

KS : KS
h i

S : S: (E9)

3. Partial density gradients

Related to the presence of gradients of partial densities only,
the rate of entropy production involves the solutions /k and /l in
the bracket integral

/k � /l
� �

¼ �
X
i;j

ð
/k
i ðciÞ I /l

i;/
l
j

h i
ðciÞ d3ci

¼ �
X
i

ð
/k
i ðciÞMi

1
ni

dil �
mini
q

� �
ci � rnl d3ci

¼
X
i

Vi � rnl (E10)

with

Vi ¼ �
ð

/k
i ðciÞMi

1
ni

dil �
mini
q

� �
ci d

3ci

¼
ð
ci K

k
i ðciÞMi

1
ni

dil �
mini
q

� �
ci � rnk d3ci

¼ 1
3
Virnk (E11)

using Eq. (F1) with

Vi ¼
ð
Kk
i ðciÞ ci � ci Mi

1
ni

dil �
mini
q

� �
d3ci

¼
X
j

ð
Kk
i ðciÞ ci � I Kl

i;K
l
j

h i
ðciÞ d3ci

¼ �
X
j

ð
Kk
i ðciÞ � I Kl

i;K
l
j

h i
ðciÞ d3ci (E12)

using Eq. (23b). Finally, one gets

/k � /l
� �

¼ 1
3

X
i

Virnk � rnl

¼ 1
3
Kk � Kl½ �rnk � rnl: (E13)

4. Temperature and density gradients

Related to the presence of simultaneous gradients of tempera-
ture and partial density only, the rate of entropy production
involves the solutions /T and /k in the bracket integral

/T � /k
� �

¼ �
X
i;j

ð
/T
i ðciÞ I /k

i ;/
k
j

h i
ðciÞ d3ci

¼ �
X
i

ð
/T
i ðciÞMi

1
ni

dik �
mini
q

� �
ci � rnk d3ci

¼
X
i

Vi � rnk (E14)

with

Vi ¼ �
ð

/T
i ðciÞMi

1
ni

dik �
mini
q

� �
ci d

3ci

¼
ð
ci K

T
i ðciÞMi

1
ni

dik �
mini
q

� �
ci � r logT d3ci

¼ 1
3
Vir logT (E15)

using Eq. (F1) with

Vi ¼
ð
KT
i ðciÞ ci � ci Mi

1
ni

dik �
mini
q

� �
d3ci

¼
X
j

ð
KT
i ðciÞ ci � I Kk

i ;K
k
j

h i
ðciÞ d3ci

¼ �
X
j

ð
KT
i ðciÞ � I Kk

i ;K
k
j

h i
ðciÞ d3ci (E16)

using Eq. (23b). Finally, one gets

/T � /k
� �

¼ 1
3

X
i

Vir logT � rnk

¼ 1
3
KT � Kk½ �r logT � rnk: (E17)

APPENDIX F: TENSOR INTEGRALS

In order to clarify the derivation of the transport coefficients
expressions, several integral terms calculations are now presented.
Consider an arbitrary function F(c) of the modulus of c, a constant
vector a, and a constant traceless symmetric tensor S, we need to
evaluate integrals over the following vector forms:

V ¼
ð
d3c c FðcÞ c � a

¼ 1
3
a
ð
FðcÞ c2 d3c

¼ 4p
3

a
ð1
0
FðcÞ c4 dc (F1)

and

T ¼
ð
d3c c� c FðcÞ c� c : S

¼ 2
15

S
ð
FðcÞ c4 d3c

¼ 8p
15

S
ð1
0
FðcÞ c6 dc: (F2)

We first address Eq. (F1). Let us assume the vector a along the
x direction

Vx ¼ a
ðþ1
�1

dcx dcy dcz c
2
x FðcÞ;

Vy ¼ a
ðþ1
�1

dcx dcy dcz cxcy FðcÞ;

Vz ¼ a
ðþ1
�1

dcx dcy dcz cxcz FðcÞ:

(F3)
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Then, Vy ¼ Vz ¼ 0 as integrals of an odd function of cx, in particu-
lar. Finally, by a change of variables from cx to cy or cz, one getsðþ1

�1
dcx dcy dcz c

2
x FðcÞ ¼

ðþ1
�1

dcx dcy dcz c
2
y FðcÞ

¼
ðþ1
�1

dcx dcy dcz c
2
z FðcÞ

¼ 1
3

ð
c2 FðcÞ d3c: (F4)

The case of Eq. (F2) is more burdensome and needs to intro-
duce spherical coordinates: cx ¼ c sin h cos/; cy ¼ c sin h sin/;
cz ¼ c cos h with d3c ¼ c2 sin h dc dh d/. Using Einstein notations
of Appendix G, the components of T write

Tij ¼
ð
d3c ci cj FðcÞ cacb Sba:

• Case i 6¼ j: (Txy; Txz; Tyz)
All the terms other than ða ¼ i; b ¼ jÞ and ða ¼ j; b ¼ iÞ van-
ishes as integrals over odd functions of the velocity components.
Since S is symmetric

Tij ¼ 2 Sij

ð
d3c c2i c

2
j FðcÞ;

and since cx, cy, and cz are integration variables and F(c) is invari-
ant over any interchange of cx, cy, and cz, the three components
are equal to

Tij ¼ 2 Sij

ð
d3c c2x c

2
y FðcÞ

¼ 2 Sij

ð1
0
c2 dc c4 FðcÞ

ð2p
0
d/ cos 2/ sin 2/

�
ðp

0
sin ðhÞ dh sin 4h

¼ Sij
8p
15

ð1
0
dc c6 FðcÞ ¼ Sij

2
15

ð
d3c c4 FðcÞ:

• Case i ¼ j: (Txx; Tyy; Tzz)
All the terms other than ða ¼ bÞ vanishes as integrals over odd
functions of the velocity components

Tii ¼ Sii

ð
d3c c4i FðcÞ þ

X
a6¼i

Saa

ð
d3c c2i c

2
a FðcÞ

¼ Sii

ð
d3c c4i FðcÞ þ

X
a6¼i

Saa
1
15

ð
d3c c4 FðcÞ

¼ Sii

ð
d3c c4i FðcÞ � Sii

1
15

ð
d3c c4 FðcÞ;

with the second integral already worked out in the case i 6¼ j and
using the fact that S is traceless. Since cx, cy, and cz, are integra-
tion variables and F(c) is invariant over any interchange of cx, cy,
and cz, the first integral can be evaluated using spherical coordi-
nates with ci ¼ cz

ð
d3c c4i FðcÞ ¼

ð
d3c c4z FðcÞ

¼
ð1
0
c2 dc c4 FðcÞ �

ð2p
0
d/

�
ðp

0
sin ðhÞ dh cos 4h

¼ 1
5

ð
d3c c4 FðcÞ:

With this last result, Eq. (F2) is proven.

APPENDIX G: EINSTEIN RULES OF SUMMATION

In this section are introduced Einstein’s rule of summation
over repeated indexes, for instance

v ¼ vaea ¼ vxex þ vyey þ vzez;

with tensor product

u� vð Þab ¼ ua vb;

and the scalar products applied to tensors

u � T� �
a
¼ uc Tca;

T : W ¼ Tab Wba:
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