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ASYMPTOTIC-PRESERVING WELL-BALANCED SCHEME FOR THE

ELECTRONIC M1 MODEL IN THE DIFFUSIVE LIMIT: PARTICULAR CASES.

S. Guisset1, 2, S. Brull1, E. d’Humières2 and B. Dubroca2

Abstract. This work is devoted to the derivation of an asymptotic-preserving scheme for the elec-
tronic M1 model in the diffusive regime. The case without electric field and the homogeneous case are
studied. The derivation of the scheme is based on an approximate Riemann solver where the intermedi-
ate states are chosen consistent with the integral form of the approximate Riemann solver. This choice
can be modified to enable the derivation of a numerical scheme which also satisfies the admissible con-
ditions and is well-suited for capturing steady states. Moreover, it enjoys asymptotic-preserving prop-
erties and handles the diffusive limit recovering the correct diffusion equation. Numerical tests cases
are presented, in each case, the asymptotic-preserving scheme is compared to the classical HLL [44]
scheme usually used for the electronic M1 model. It is shown that the new scheme gives comparable
results with respect to the HLL scheme in the classical regime. On the contrary, in the diffusive
regime, the asymptotic-preserving scheme coincides with the expected diffusion equation, while the
HLL scheme suffers from a severe lack of accuracy because of its unphysical numerical viscosity.
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Introduction

In inertial confinement fusion, nanosecond laser pulses are used to ignite a deuterium-tritium target. An
accurate description of this process is necessary for the understanding of laser-matter interactions and for target
design. Numerous physical phenomena such as, parametric [36, 67] and hydrodynamic [32, 74, 81] instabilities,
laser-plasma absorption [73], wave damping [57], energy redistribution [70] inside the plasma and hot spots
formation [12, 65] from which the thermonuclear reactions propagate depend on the electron heat transport.
The most popular electron heat transport theory was developed by Spitzer and Härm [76] who first solved the
electron kinetic equation by using the expansion of the electron mean free path to the temperature scale length
(denoted ε in this paper). Considering the distribution function of particles close to equilibrium, its deviation
from the Maxwellian distribution function can be computed and the electron transport coefficients in a fully
ionised plasma without magnetic field are derived. However, even if the electron heat transport is essential,
it is not correctly described in large inertial confinement fusion tools. Indeed, when the electron mean free
path exceeds about 2.10−3 times the temperature gradient length, the local electron transport model of Spitzer
and Härm fails. The transport coefficients were derived in the case where the isotropic part of the electron
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distribution function remains close to the Maxwellian function. The results of Spitzer and Härm have been
reproduced in several approaches [4,11,75] which develop another technique of solution to the integral equation
for the electron distribution function introduced many years ago by Chapman and Enskog [23] for neutral gases.
Therefore, kinetic approaches seem necessary in the context of inertial confinement fusion. In such multiscale
issues, kinetic solvers are often very computationally expensive and usually limited to time and length much
shorter than those studied with hydrodynamic simulations. It is then a challenge to describe kinetic effects
using a reduced kinetic code on fluid time scales.

The angular moments models represent an alternative method situated between kinetic and fluid models.
Their computational times are shorter than kinetic ones and they provide results with a higher accuracy than
fluid models. Originally, the moment closure hierarchy introduced by Grad [40] leads to a hyperbolic set
of equations for flows close to equilibrium but may suffer from closure breakdown and lead to unrealisable
macroscopic moments. Grad hierarchy is derived from a truncated polynomial series expansion for the velocity
distribution function near the Maxwellian equilibrium and does not ensure the positivity of the distribution
function. Other moment closure approaches have been investigated based on entropy minimisation principles
[2, 61, 68, 69, 77]. The distribution function derived, verifies a minimum entropy property and the consistency
with the set of moments. Fundamental mathematical properties [42, 66] such as positivity of the distribution
function, hyperbolicity and entropy dissipation can be exhibited. Levermore [61] proposed a hierarchy of
minimum-entropy closure where the lowest order closure are the Maxwellian and Gaussian closure. In the
present case, the aim is different. Here the energy of particles constitutes a free parameter. Then we integrate
only the kinetic equation with respect to the angle variable and we return only the energy of particles as kinetic
variable. By using a closure defined from a minimisation entropy principle, we obtain the M1 model [33,34,63].
The M1 model is largely used in various applications such as radiative transfer [7,24,35,71,72,79,80] or electronic
transport [33, 63]. The M1 model is known to satisfy fundamental properties such as the positivity of the first
angular moment, the flux limitation and conservation of total energy. Also, it correctly recovers the asymptotic
diffusion equation in the limit of long time behaviour with important collisions [34].

One challenging issue is to derive numerical schemes satisfying fundamental properties. For example, the
classical HLL scheme [44] ensures the positivity of the first angular moment and the flux limitation property.
However, this scheme fails in recovering the correct limit diffusion equation in the asymptotic regime [3].
Therefore, numerous numerical schemes have been derived over the last 20 years to recover the correct asymptotic
limit. These schemes are able to handle multiscales situations and are called asymptotic-preserving (AP) scheme.
They are consistent with the macroscopic model when ε tends to zero and are uniformly stable with respect to
ε. AP schemes also avoid the coupling of multiscales equations where the coupling conditions at the interface
can be difficult to obtain. Early works on AP schemes have been performed in [46–49, 58, 59]. These works
have been largely extended in the frame of kinetic equations in fluid and diffusive regimes [17, 25, 50, 54]. The
time stiffness induced by the collisional operator led to propose a decomposition of the distribution function
between an equilibrium and a deviation [5, 14, 19, 45, 51, 53, 55, 60]. In [13], a two steps method based on a
relaxation scheme and a well-balanced scheme step is proposed, (see [9, 52] for more details on the relaxation
scheme framework). The derivation of well-balanced schemes also helps to design AP schemes [38, 39] (see
also [1, 9, 10, 18, 21, 22, 37, 41] for details on well-balanced schemes in different frameworks). The AP frame was
also largely extended to the quasi-neutral limit [26–30, 43]. In [7], an HLLC scheme is proposed to solve the
M1 model of radiative transfer in two space dimensions. The HLLC approximate Riemann solver considered
and relevant numerical approximations of extreme wavespeeds give the asymptotic-preserving property. Similar
ideas were also developed in [6], where a relaxation scheme is exhibited. In order to derive suitable schemes
pertinent for transport and diffusion regimes, different authors proposed modified Godunov-type schemes in
order to include sources terms [41]. The numerical viscosity is modified in [15,16,38,39] to correctly recover the
expected diffusion regimes but extensions seem challenging issues. In [8], the approximate HLL Riemann solver
is modified to include a collisional source term. The resulting numerical scheme satisfies all the fundamental
properties and a clever correction enables to recover the good diffusion equation in the asymptotic limit.
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In this paper, we consider the M1 model for the electronic transport [33,63,64] in a Lorentzian plasma where
ions are supposed fixed. The moment system studied writes

∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ))

= −2αei(x)f1(t, x, ζ)

ζ3
,

(1)

where f0, f1 and f2 are the first three angular moments of the electron distribution function f . Omitting the
x and t dependency, they are given by

f0(ζ) = ζ2

∫ 1

−1

f(µ, ζ)dµ, f1(ζ) = ζ2

∫ 1

−1

f(µ, ζ)µdµ, f2(ζ) = ζ2

∫ −1

−1

f(µ, ζ)µ2dµ. (2)

The coefficient αei is a positive physical function which may depend on x, E represents the electrostatic field
as a function of x and ζ the velocity modulus. The fundamental point of the moments models is the definition of
the closure which writes the highest moment as a function of the lower ones. This closure relation corresponds
to an approximation of the underlying distribution function, which the moments system is constructed from.
In the M1 problem we need to define f2 as a function of f0 and f1. The closure relation originates from an
entropy minimisation principle [61,68]. The moment f2 can be calculated [33,35] as a function of f0 and f1

f2(t, x, ζ) = χ
(f1(t, x, ζ)

f0(t, x, ζ)

)
f0(t, x, ζ), with χ(α) ≈ 1 + α2 + α4

3
. (3)

The set of admissible states [33] is defined by

A =
(

(f0, f1) ∈ R2, f0 ≥ 0, |f1| ≤ f0

)
. (4)

A challenging issue is to derive a numerical scheme for the electronM1 model (1) satisfying all the fundamental
properties and which handles correctly the diffusive limit recovering the good diffusion equation. Such a scheme
could then have a direct access to all the nonlocal regimes and their related physical effects described above
while the other numerical schemes breakdown in such regimes. Different complications arise when considering
such an issue. Firstly, the electronic M1 model (1) is nonlinear. Because, of the entropic closure, the angular
moment f2 is a nonlinear function of f0 and f1. Secondly, the approach undertaken must be sufficiently general
to correctly take into account the source term −E(x)(f0(t, x, ζ) − f2(t, x, ζ))/ζ. One must notice, that this
term is closely related to the term E∂ζf2(t, x, ζ), it plays an important role for low energies and can not be
treated as a collisional source term. Thirdly, for the purpose of realistic physical applications, one may require
to correctly capture steady states. In the case of near-equilibrium configurations such a well-balancing property
is then desired. Also, the physical parameter αei is a function of x and cannot be treated as a constant. Finally,
the space and energy dependencies of the angular moments, lead to a very complex diffusion equation in the
asymptotic limit with mixed derivatives.

In this paper, the case without electric field and the homogeneous case are studied. The extension to the
general case is beyond the scope of this paper. However, the generalisation to the general problem requires
a deep understanding of the two configurations studied here. The approach retained is noticeably different
with [6,7,44]. The derivation of the scheme is based on an approximate Riemann solver where the intermediate
states are chosen consistent with the integral form of the approximate Riemann solver. This choice can be
modified to enable the derivation of a scheme which also satisfies the admissibility conditions (4) and is well-
suited for capturing steady states. Moreover, it enjoys asymptotic-preserving properties and correctly handles
the diffusive limit recovering the good diffusion equation.

We first introduce the model without electrostatic field and its diffusive limit in Section 2. The limits
of the classical HLL scheme [44] are briefly recalled before introducing the derivation of the new numerical
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scheme. The asymptotic-preserving property is exhibited. Then, Section 3 is devoted to the homogeneous
case with an electric field. We point out the great difficulties encountered when using a relaxation approach
in order to include the source term −E(x)(f0(t, x, ζ) − f2(t, x, ζ))/ζ. Then, the derivation of an asymptotic-
preserving scheme following the method introduced in the previous section is detailed and the well-balanced and
asymptotic-preserving properties are analysed. In Section 4, different numerical tests are presented to highlight
the efficiency of the present method. We conclude the paper in Section 5.

1. Case without electrostatic field

The first simplified case we consider is given by system (1) without electrostatic field E. In this case the M1

model (1) writes 
∂tf0 + ζ∂xf1 = 0,

∂tf1 + ζ∂xf2 = −2αei
ζ3

f1.
(5)

A very similar system was considered in [6] in the frame of radiative transfer and a relaxation scheme was
proposed. The same procedure could be applied in this case, however we introduce a different approach based
on approximate Riemann solvers.

1.1. Model and diffusive limit

We consider the following diffusion scaling

t̃ = t/t∗, x̃ = x/x∗, ζ̃ = ζ/vth, Ẽ = Ex∗/vth. (6)

The parameters t∗ and x∗ are chosen such that τei/t
∗ = ε2, λei/x

∗ = ε, where τei is the electron-ion collisional
period , λei the electron-ion mean free path and vth the thermal velocity defined by vth = λei/τei. The positive
parameter ε is devoted to tend to zero. In that case, omitting the tilde notation, system (5) rewrites

ε∂tf
ε
0 + ζ∂xf

ε
1 = 0,

ε∂tf
ε
1 + ζ∂xf

ε
2 = −2σ

ζ3

fε1
ε
,

(7)

where the coefficient σ represents a positive function of x defined as

σ(x) =
τeiαei(x)

v3
th

.

Inserting the following Hilbert expansion of fε0 and fε1{
fε0 = f0

0 + εf1
0 +O(ε2),

fε1 = f0
1 + εf1

1 +O(ε2),
(8)

into the second equation of (7) leads to

f0
1 = 0. (9)

Using the definition (3), it follows that

f0
2 = f0

0 /3. (10)

So, the second equation of (7) gives
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f1
1 = − ζ

4

6σ
∂xf

0
0 . (11)

Using the previous equation and the first equation of (7) finally leads to the diffusion equation for f0
0

∂tf
0
0 (t, x)− ∂x

( ζ5

6σ(x)
∂xf

0
0 (t, x)

)
= 0. (12)

Here we have omitted the tilde notation, writing this diffusion equation in non-rescaled (dimensional) variables
we obtain

∂tf
0
0 (t, x)− ∂x

( ζ5

6αei(x)
∂xf

0
0 (t, x)

)
= 0. (13)

1.2. The numerical method

In this part, we first recall the limit of the HLL scheme, usually used for the electronic M1 model, for the
diffusive limit.

1.2.1. Limit of the HLL scheme

Introduce a uniform mesh with constant space step ∆x = xi+1/2 − xi−1/2, i ∈ Z and a time step ∆t. We

consider a piecewise constant approximate solution Uh(x, tn) ∈ R2 at time tn

Uh(x, tn) = Uni if x ∈ [xi−1/2, xi+1/2] (14)

with Uni = t(fn0i, f
n
1i). The classical HLL scheme [44] for the system (12), in the case where the minimum

and maximum velocity waves involved in the approximate Riemann solver are chosen equal to −ζ and ζ, writes
ε
fn+1,ε

0i − fn,ε0i

∆t
+ ζ

fn,ε1i+1 − f
n,ε
1i−1

2∆x
− ζ∆x

fn,ε0i+1 − 2fn,ε0i + fn,ε0i−1

2∆x2
= 0,

ε
fn+1,ε

1i − fn,ε1i

∆t
+ ζ

fn,ε2i+1 − f
n,ε
2i−1

2∆x
− ζ∆x

fn,ε1i+1 − 2fn,ε1i + fn,ε1i−1

2∆x2
= −2σi

ζ3

fn,ε1i

ε
.

(15)

We introduce the discrete Hilbert expansions{
fε0i = fn,00i + εfn,10i +O(ε2),

fn,ε1i = fn,01i + εfn,11i +O(ε2).
(16)

At the order ε−1, the second equation of (15) gives

fn,01i = 0 (17)

and using the definition (3), it follows that

fn,02i = fn,00i /3. (18)

At the order ε0, the second equation of (15) gives

fn,11i = − ζ3

3σi

fn,00i+1 − f
n,0
0i−1

2∆x
. (19)

However, because of the diffusive part of the HLL scheme, the first equation of (15) also leads to

fn,00i+1 − 2fn,00i + fn,00i−1

∆x2
= 0 (20)

which is not the diffusion equation expected for f0
0 . The diffusive part of the HLL scheme gives an unphysical

numerical viscosity and leads to the wrong asymptotic behaviour.
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1.2.2. Derivation of the scheme

The ideas introduced in [6, 8, 9, 41] in order to include the contribution of source terms, urge to consider
approximate Riemann solvers which own a stationary discontinuity (0-contact discontinuity). Therefore, we
introduce the following approximate Riemann solvers at each cell interface, denoted by UR(x/t, UL, UR), defined
by

UR(x/t, UL, UR) =


UL if x/t < −ax,
UL∗ if − ax < x/t < 0,

UR∗ if 0 < x/t < ax,

UR if ax < x/t,

(21)

where UL∗ = t(fL∗0 , f∗1 ), UR∗ = t(fR∗0 , f∗1 ) and the minimum and maximum velocity waves −ax and ax.
Note, we choose the two velocity waves to be opposite. The structure solution of the approximate Riemann
problem is displayed in Figure 1. At the interface xi+ 1

2
, the quantities UL and UR stand for Ui = t(f0i, f1i)

and Ui+1 = t(f0i+1, f1i+1). Contrarily to the classical HLL scheme [78] two intermediate states UL∗ and UR∗

are introduced. The second components of the two intermediate states are chosen equal, ie fL∗1 = fR∗1 = f∗1 .

Figure 1. Structure solution of the approximate Riemann problem.

The approximate solution at time tn + ∆t is chosen as

Uh(x, tn + ∆t) = UR

(x− xi+1/2

tn + ∆t
, Ui, Ui+1

)
if x ∈ [xi, xi+1]. (22)

As the following CFL condition is respected

∆t ≤ ∆x

2ax
, (23)

the piecewise constant approximate solution is then obtained

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

Uh(x, tn+1)dx. (24)

The intermediate states fL∗0 , fR∗0 and f∗1 must be defined. Integrating the first equation of (5) on [−ax∆t, ax∆t]×
[0,∆t] and multiplying by 1

2ax∆t , gives the following consistency condition

fL∗0 + fR∗0

2
=
fL0 + fR0

2
− 1

2ax
[ζfR1 − ζfL1 ]. (25)
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The unknowns fL∗0 and fR∗0 will be chosen in order to satisfy this consistency condition (25). The same
procedure using the second equation of (5) gives

f∗1 =
fL1 + fR1

2
− 1

2ax
(ζfR2 − ζfL2 )− 2

ζ3

1

2ax∆t

∫ ax∆t

−ax∆t

∫ ∆t

0

αei(x)f1(x, t)dtdx. (26)

The following approximation is made

1

2ax∆t

∫ ax∆t

−ax∆t

∫ ∆t

0

αei(x)f1(x, t)dtdx = ᾱei∆tf
∗
1 , (27)

with ᾱei = α(0). Using (27) in (26), it follows that

f∗1 =
ζ3

ζ3 + 2ᾱei∆t

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
. (28)

Finally the following definition of f∗1 is chosen

f∗1 =
2axζ

3

2axζ3 + 2ᾱei∆x

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
. (29)

It will be shown in the next part, that this choice enables to obtain the good asymptotic-preserving property.
Also, this definition recovers the formalism introduced in [7, 8].

In order to respect the consistency relation (25), the unknowns fL∗0 and fR∗0 are defined by{
fL∗0 = f̃0 − Γ,

fR∗0 = f̃0 + Γ,
(30)

with

f̃0 =
fL0 + fR0

2
− 1

2ax
(ζfR1 − ζfL1 ) (31)

and the coefficient Γ is calculated using the classical Rankine-Hugoniot conditions
fL∗0 = fL0 −

ζ

ax
(f∗1 − fL1 ),

fR∗0 = fR0 −
ζ

ax
(fR1 − f∗1 ).

(32)

It follows that

Γ =
1

2
[fR0 − fL0 −

ζ

ax
(fL1 − 2f∗1 + fR1 )]. (33)

In order to satisfy the admissibility conditions (4), we propose to modify the states fL∗0 and fR∗0 such that{
fL∗0 = f̃0 − Γθ,

fR∗0 = f̃0 + Γθ,
(34)

where θ ∈ [0, 1] is fixed to ensure the admissibility conditions.

Remark 1.1. In the case θ = 0, the admissibility requirements (4) are fulfilled.

Indeed, in this case system (34) gives fR∗0 = fL∗0 = f̃0 and f∗1 is given by (29). Since 2axζ
3/(2axζ

3+σ∆x) ≤ 1
it follows that f∗1 ≤ fR∗0 = fL∗0 . Then the parameter θ is computed as the largest possible such that
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
fR∗0 − |f∗1 | ≥ 0,

fL∗0 − |f∗1 | ≥ 0,

fR∗0 ≥ 0 and fL∗0 ≥ 0.

(35)

Equations (33), (34) and (35) lead to the following condition

θ̃ =
f̃0 − |f∗1 |
|Γ|

≥ 0. (36)

Finally, θ is chosen as θ = min(θ̃, 1).

Therefore the unknowns fn+1
0i and fn+1

1i are computed using (24)
fn+1

0i =
ax∆t

∆x
fR∗0i−1/2 + (1− 2ax∆t

∆x
)fn0i +

ax∆t

∆x
fL∗0i+1/2,

fn+1
1i =

ax∆t

∆x
f∗1i−1/2 + (1− 2ax∆t

∆x
)fn1i +

ax∆t

∆x
f∗1i+1/2.

(37)

The wavespeed ax is fixed using the ideas introduced in [6]. It is known that the electronic M1 model without
electric field is hyperbolic symmetrizable [61] and the eigenvalues of the Jacobian matrix always belong in the
interval [−ζ, ζ]. Therefore, we set ax = ζ.

1.3. Asymptotic-preserving properties

In this part we prove the asymptotic-preserving property of the scheme (29)-(34)-(37). It is shown that when
ε tends to zero, the scheme (29)-(34)-(37) is consistent with the limit diffusion equation (12).

Theorem 1.2. When ε tends to zero, the unknown fn+1,0
0i given by the numerical scheme (37)-(34)-(29) satisfies

the following discrete equation

fn+1,0
0i − fn,00i

∆t
− ζ

∆x

[ ζ3

6σ̄i+1/2∆x

[
(ζfn,00i+1 − ζf

n,0
0i )

]
− ζ3

6σ̄i−1/2∆x

[
(ζfn,00i − ζf

n,0
0i−1)

]]
= 0. (38)

Proof. Following the same approach as in [7, 8], using the diffusive scaling and equation (37) leads to
ε
fn+1

0i − fn0i
∆t

=
ax
∆x

fL∗0i+1/2 −
2ax
∆x

fn0i +
ax
∆x

fR∗0i−1/2,

ε
fn+1

1i − fn1i
∆t

=
ax
∆x

f∗1i+1/2 −
2ax
∆x

fn1i +
ax
∆x

f∗1i−1/2,

(39)

where the intermediate states fL∗0 and fR∗0 are given by (34) and (29) rewrites

f∗1 =
2axζ

3

2axζ3 + 2σ̄∆x/ε

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
. (40)

As soon as ε tends to zero, we obtain f∗1 = 0. We now suppose that fn1i = 0 in the limit ε tends to zero. In
this case, the definition (36) leads to

θ̃ =
fL0 + fR0
|fL0 − fR0 |

≥ 1. (41)

Then the parameter θ is equal to 1.
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Remark 1.3. In the diffusive regime when ε tends to zero, no limitation on the intermediates states (34) is
required.

Using the definition (34), it follows that the intermediate states fL∗0 and fR∗0 are given by
fL∗0 = fL0 −

ζ

ax
(f∗1 − fL1 ),

fR∗0 = fR0 −
ζ

ax
(fR1 − f∗1 ).

(42)

The discrete Hilbert expansions (16) are now used. Inserting the previous expressions in the first equation
of (39), considered at the order ε0, gives no information since the terms cancel each other out. However, at the
order ε1, the expressions (42), (40) and the first equation of (39) lead to

fL∗,10 = fL,10 − ζ

ax
(f∗,11 − fL,11 ),

fR∗,10 = fR,10 − ζ

ax
(fR,11 − f∗,11 ),

(43)

with

f∗,11 = − ζ3

6σ̄∆x

(
ζfR,n,00 − ζfL,n,00

)
(44)

and

fn+1,0
0i − fn,00i

∆t
=

ax
∆x

f∗,10i+1/2 −
2ax
∆x

fn,10i +
ax
∆x

f∗,10i−1/2. (45)

Inserting expressions (43) into (45) leads to equation (38) which is consistent with the limit diffusion equation
(12).

To complete the proof, it is necessary to show that fn1 tends to zero, when ε tends to zero. Equation (24)
gives

∆xUn+1
i =

∫ xi

xi−1/2

URdx+

∫ xi+1/2

xi

URdx, (46)

where UR is computed with the approximate Riemann problem (21). Then∫ xi

xi−1/2

f1(x,∆t)dx = ax∆tf∗1i−1/2 + (
∆x

2
− ax∆t)fn1i (47)

and ∫ xi+1/2

xi

f1(x,∆t)dx = (
∆x

2
− ax∆t)fn1i + ax∆tf∗1i+1/2. (48)

A long but classical calculation [8] leads to

fn+1
1i − fn1i

∆t
+

1

∆x

[ 2ax
2ax + σ̄i+1/2∆x

Fi+1/2 −
2ax

2ax + σ̄i−1/2∆x
Fi−1/2

]
(49)

+
1

∆x

[ ∆xσ̄i+1/2

2ax + σ̄i+1/2∆x
(−axfn1i − ζfn2i) +

∆xσ̄i−1/2

2ax + σ̄i−1/2∆x
(−axfn1i + ζfn2i)

]
= 0,

with
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Fi+1/2 =
1

2

[
ζfn2i+1 + ζfn2i − ax(fn1i+1 + fn1i)

]
. (50)

Using the diffusive scaling we obtain that fn1i tends to zero when ε tends to zero. �

1.4. Stability property

The asymptotic-preserving property requires that the scheme should be uniformly stable with respect to the
small parameter ε. In the case of an uniform stable scheme the CFL stability condition in diffusive regime
should be that of a diffusion scheme ∆t ≤ 3αei∆x

2/ζ5 (see Eq.13). Also, in the case of a small collisional
parameter αei, the time step should be chosen according to the hyperbolic CFL condition ∆t ≤ ∆x/ζ. An
uniform stability property is proved in [56] or [62] in the framework of linear scalar equations. However, the
model considered in this work is a nonlinear system and the derivation of such a property is very challenging.
Therefore, for the numerical test cases we consider the CFL condition

∆t ≤ max(∆x/ax, 3αei∆x
2/ζ5). (51)

In practice, it has been observed that in the case of a very large collisional parameter αei the CFL stability
condition is that of a diffusion scheme ∆t ≤ 3αei∆x

2/ζ5 and the proposed AP scheme is not stable. More
precisely, in a very diffusive regime when considering a parabolic CFL condition, it is observed that the quantity
fn1i does not behave in O(ε) in the long time regime as expected (see condition Eq. 9).
To overcome this drawback, instead of using the second equation of (37), we propose to consider the classical
following scheme to compute fn1i at each time step

fn+1
1i − fn1i

∆t
+ ζ

fn2i+1 − fn2i−1

2∆x
− ax

fn1i+1 − 2fn1i + fn1i−1

2∆x
= −2αei

ζ3
fn+1

1i . (52)

This scheme rewrites

fn+1
1i =

ζ3

ζ3 + 2αei∆t

[
fn1i −∆t

(
ζ
fn2i+1 − fn2i−1

2∆x
− ax

fn1i+1 − 2fn1i + fn1i−1

2∆x

)]
. (53)

Obviously this scheme is consistent with the second equation of (5) and captures the correct asymptotic limits
(9) and (11). Here, it is important to notice that we still consider the first equation of (37) with the definitions
(34)-(33)-(36) to compute fn0i at each time step. This choice enables to correctly capture the asymptotic limit
and the use of the parabolic CFL condition in the diffusive regime.
In addition, the numerical solution needs to satisfy the admissibility requirements (4). Indeed, the correction
parameter θ defined in (36) was proposed considering the second equation of (37) which is now replaced by (53).
However, it can be shown that the condition (36) also enables the admissibility of the numerical solution using
(53).

Proposition 1.4. The numerical scheme (33)-(34)-(36)-(37)-(53) preserves the admissibility of the numerical
solutions.

Proof. We remark that equation (53) rewrites

fn+1
1i = α

ax∆t

∆x
f̃1i−1/2 + α(1− 2ax∆t

∆x
)fn1i + α

ax∆t

∆x
f̃1i+1/2, (54)

with α = ζ3/(ζ3 + 2αei∆t) ∈ [0, 1] and

f̃1i+1/2 =
fn1i + fn1i+1

2
− 1

2ax
(ζfn2i+1 − ζfn2i). (55)



TITLE WILL BE SET BY THE PUBLISHER 11

Using the first equation of (37) and (54) a direct calculation shows that the condition (36) ensure the
admissibility of the numerical solution. Also, it can be seen geometrically since the admissible set a convex cone
and α belongs to [0, 1].

�

2. Homogeneous case with electric field

The second simplified model studied, is given by (1) without space dependency but considering an electric
field. In this section, the difficulties encountered when using a relaxation-type method to include the source
term −Eζ (f0−f2) are highlighted. Following the same procedure as in the case without electric field, a numerical

scheme is proposed and the source term −Eζ (f0 − f2) is taken into account. The scheme presented, satisfies a

well-balanced property and is asymptotic-preserving. The collision coefficient αei is a function of x and is then
constant in the present case. However, the method proposed here, is able to handle the case where αei depends
on ζ. Without spatial dependency, the model (1) simplifies into

∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 −
E

ζ
(f0 − f2) = −2αeif1

ζ3
.

(56)

Using the Hilbert expansions (8) as in the previous case, the following diffusion equation is obtained

∂tf
0
0 (t, ζ)− E∂ζ

(Eζ3

6αei
∂ζf

0
0 (t, ζ)− Eζ2

3αei
f0

0 (t, ζ)
)

= 0. (57)

2.1. Limit of the relaxation approach

Using the ideas introduced in [6], one can think of deriving a relaxation scheme for system (56). Even if the
approach is similar, the relaxation scheme involved would be significantly different from the one proposed in [6]
since the source term −Eζ (f0 − f2) should be added. To assess such an issue, we first consider the collisionless
case 

∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 −
E

ζ
(f0 − f2) = 0.

(58)

Setting ∂ζz(ζ) = 1/ζ, we propose the following relaxation model

∂tf0 + E∂ζφ− E(f1 − φ)z′(ζ) = 0,

∂tφ+ E∂ζf0 − 2Ef0z
′(ζ) = µ(f1 − φ),

∂tf1 + E∂ζπ − E(f0 − π)z′(ζ) = 0,

∂tπ + E∂ζf1 − 2Ef1z
′(ζ) = µ(f2 − π),

∂tz = 0,

(59)

where φ and π are relaxation variables. In the case µ = 0, the previous system is hyperbolic, the eigenvalues
are −E, 0, E and are associated with linearly degenerate fields. Hence, the Riemann problem can be solved.

In order to be consistent with the notations [6], we introduce

w = t(f0, φ, f1, π, z), U = t(f0, f1), F(U) = t
(
Ef1, Ef2(f0, f1)

)
(60)
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Eigenvalue Multiplicity Riemann Invariants Eigenvectors
E 2 f0 + φ, f1 + π, z t(0, 0, 1, 1, 0), t(1, 1, 0, 0, 0)
−E 2 −f0 + φ, −f1 + π, z t(0, 0,−1, 1, 0), t(−1, 1, 0, 0, 0)

0 1 f1
ζ2 , f0

ζ2 , ζ(π − f0/3), ζ(φ− f1/3) t(2f0, f1 − φ, 2f1, f0 − π, 1)

Table 1. Features of the Riemann problem

Lemma 2.1. Let wL,R be equilibrium constant states with φL,R = fL,R1 and πL,R = fL,R2 . Defining the initial
condition of (59) by w0(x) = wL if x < 0 and w0(x) = wR if x > 0 for µ = 0, the solution of (59) writes

w(x, t) =


wL if x/t < −E,
wL∗ if − E < x/t < 0,

wR∗ if 0 < x/t < E,

wR if E < x/t,

(61)

with

fL∗,R∗0 =
3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(−fR2 − 2fR1 + 3fR0 )(ζR)4 + (−fL2 + 2fL1 + 3fL0 )(ζL)4

+(fL2 +4fL1 + 3fL0 )(ζR)3(ζL) + (fR2 − 4fR1 + 3fR0 )(ζR)(ζL)3
)
,

fL∗,R∗1 =
3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(3fR2 − 2fR1 − fR0 )(ζR)4 + (−3fL2 − 2fL1 + fL0 )(ζL)4

+(−3f2
L − 4fL1 − fL0 )(ζR)3(ζL) + (3fR2 − 4fR1 + fR0 )(ζR)(ζL)3

)
,

zL∗,R∗ = zL,R,

φL∗ = fL0 + fL1 − fL∗0 , φR∗ = −fR0 + fR1 + fR∗0 ,

πL∗ = fL1 + fL2 − fL∗1 , πR∗ = −fR1 + fR2 + fR∗1 ,

and UL∗,R∗ = t(fL∗,R∗0 , fL∗,R∗1 ) satisfy the admissibility conditions (4).

The computation of the intermediate states UL∗,R∗ is straightforward using the Riemann invariants given in
Table 1. A long but easy calculation, using the expressions gives the admissibility conditions (4).
The relaxation model (59) enables the computation of a numerical scheme [9,20,52] for the model (58). However,
one notices the complexity of the intermediate states UL∗,R∗ and an extension including the collisional term
−2αeif1/ζ

3 is very challenging. Different relaxation models were tested in order to include the collisional source
term, but, because of their complexity, they lead to configurations where a Riemann invariant is missing and
the problem remains unclosed. In a recent work [31], the same issue is encountered and an additional relation
is arbitrarily imposed. In the present situation, this strategy leads to particularly inconvenient solutions and
the admissibility conditions are lost.

2.2. The numerical method

The numerical approach presented in the case without electric field is now considered. Contrarily to the
relaxation-type procedure, this method enables to include the source term −Eζ (f0 − f2) naturally.
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Integrating the second equation of (56) by
∫ aζ∆t

−aζ∆t

∫∆t

0
and multiplying by 1

2aζ∆t gives the following expression

f∗1 =
2aζζ

3

2aζζ3 + 2αei∆ζ

[fL1 + fR1
2

− 1

2aζ
(EfR2 − EfL2 ) +

∆ζ

2aζ
SL,R

]
, (62)

with

SL,R =
1

2

[ E
ζR

(fR0 − fR2 ) +
E

ζL
(fL0 − fL2 )

]
. (63)

The unknowns fL∗0 , fR∗0 , fn+1
0 and fn+1

1 are computed following the same approach as in the first part
fn+1

0i =
aζ∆t

∆ζ
fR∗0i−1/2 + (1− 2aζ∆t

∆ζ
)fn0i +

aζ∆t

∆ζ
fL∗0i+1/2,

fn+1
1i =

aζ∆t

∆ζ
f∗1i−1/2 + (1− 2aζ∆t

∆ζ
)fn1i +

aζ∆t

∆ζ
f∗1i+1/2,

(64)

where the unknowns fR∗0 and fL∗0 are given by{
fL∗0 = f̃0 − Γθ,

fR∗0 = f̃0 + Γθ,
(65)

with

Γ =
1

2
[fR0 − fL0 −

ζ

aζ
(fL1 − 2f∗1 + fR1 )] (66)

and

f̃0 =
fL0 + fR0

2
− 1

2aζ
[ζfR1 − ζfL1 ]. (67)

Using, the same arguments as in the case without electric field, we set aζ = |E|

2.3. Properties

In this part, we are interested in the equilibrium solution of system (56). It is shown that the scheme (62)-
(64)-(65) preserves this solution. Then, the asymptotic-preserving feature of the scheme is exhibited.

A stationary solution of system (56) satisfies
E
∂f1

∂ζ
= 0,

E
∂f2

∂ζ
− E

ζ
(f0 − f2) = −2αeif1

ζ3
.

(68)

The first equation of (68) implies that f1 is independent of ζ. Using the definitions of the angular moments
(2) and the definition (3), it follows that f1 = 0 and f2 = f0/3. Indeed the definitions (2) imply f1 = 0 in ζ = 0.
The second equation of the previous system is solved and gives the equilibrium solution of the model (56){

f0 = Kζ2,

f1 = 0,
(69)

where K is a scalar constant.
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Theorem 2.2. The numerical scheme given by (62)-(64)-(65) is well-balanced in the sense that the stationary
states (69) are exactly preserved by the scheme.

Proof. Using the stationary states (69) into the definition (62) leads to

f∗1 =
2aζζ

3

aζζ3 + 2αei∆ζ

[
− 1

3aζ
(EKζ2

R − EKζ2
L) +

∆ζEK

3aζ
(ζR + ζL)

]
. (70)

Since (ζ2
R − ζ2

L) = (ζR + ζL)(ζR − ζL) = (ζR + ζL)∆ζ, the calculation of the previous equation gives

f∗1 = 0. (71)

Using the second equation of (64) leads to

fn+1
1 = 0. (72)

With the definition (34) it follows that
fR∗0 =

1

2
[f0L − θf0L + f0R + θf0R],

fL∗0 =
1

2
[f0R − θf0R + f0L + θf0L].

(73)

The initial conditions (69) imply that θ = 1 and inserting (73) into the first equation of (64) give

fn+1
0i =

a∆t

∆ζ
Kζ2

i + (1− 2a∆t

∆ζ
)Kζ2

i +
a∆t

∆ζ
Kζ2

i . (74)

Finally, the previous equation simplifies to give

fn+1
0i = Kζ2

i . (75)

The stationary solution (69) is then preserved by the scheme.
�

Using the ideas introduced in the first section, we obtain that the scheme (62)-(64)-(65) is consistent with
the limit diffusion equation (57) in the diffusive limit.

Theorem 2.3. When ε tends to zero, the unknown fn+1
0 given by the numerical scheme (62)-(64)-(65) satisfies

the following discrete equation

fn+1,0
0i − fn,00i

∆t
− E

∆ζ

[ζ3
i+1/2

6σ∆ζ

[
(Efn,00i+1−Ef

n,0
0i )

]
−
ζ3
i−1/2

6σ∆ζ

[
(Efn,00i −Ef

n,0
0i−1)

]
+
ζ3
i+1/2S

n,0
i+1/2

2σ
−
ζ3
i−1/2S

n,0
i−1/2

2σ

]
= 0,

with

Sn,0i+1/2 =
E

3

[fn,00i+1

ζi+1
+
fn,00i

ζi

]
.

Proof. The proof is the same as in the case without electric field. �

As in the inhomogeneous case without electric field, in practice the following stability CFL condition is used

∆t ≤ max(∆ζ/aζ , 3αei∆ζ
2/E2ζ3

max). (76)
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Similarly, using the ideas of the first part we consider the following scheme to compute fn1i at each time step

fn+1
1i =

ζ3
i

ζ3
i + 2αei∆t

[
fn1i −∆t

(
E
fn2i+1 − fn2i−1

2∆ζ
− aζ

fn1i+1 − 2fn1i + fn1i−1

2∆ζ
+
Sni+1/2 + Sni−1/2

2

)]
(77)

where

Sni+1/2 =
1

2

[ E

ζi+1
(fn0i+1 − fn2i+1) +

E

ζi
(fn0i − fn2i)

]
. (78)

This scheme enables the use of the parabolic CFL condition (76) in the case of a large collisional parameter
αei. In addition, the well-balanced property is ensured since the stationary state (69) is still preserved by this
scheme.

3. Numerical examples

In this section we compare the asymptotic-preserving scheme to the standard HLL scheme [44] and to an
explicit discretisation of the diffusion equation in different regimes. For all the numerical test cases the time
step considered for the asymptotic-preserving scheme is taken as the maximum of the hyperbolic time step and
the diffusion time step (see CFL condition Eq. 51). The numerical scheme is able to work with the diffusion
time step when it becomes larger than the hyperbolic time step.

3.1. Free transport without electric field

We first consider system (5), without collisions, to validate the numerical scheme proposed in (29)-(34)-(37)
on a simple advection of an initial profile. The solution is compared with the exact solution. Consider the initial
conditions


f0(x, 0) =

√
2

π
exp(− (x+ 5)2

2
),

f1(x, 0) =

√
2

π
exp(− (x+ 5)2

2
),

(79)

with periodical boundary conditions. In this case we have fixed ζ = 5. In Figure 2, we compare the numerical
solution obtained with the scheme (29)-(34)-(37) displayed in dashed blue with the exact solution in red at time
t=6 using ∆x = 4 · 10−3. In Table 2 the results of a convergence study are given. The scheme is first order
accurate.

∆x L1 error L1 order L2 error L2 order L∞ error L∞ order
4 · 10−2 0.63 - 0.27 - 0.22 -
2 · 10−2 0.36 0.77 0.17 0.7 0.14 0.65
1 · 10−2 0.20 0.88 0.09 0.83 0.08 0.84

6.66 · 10−2 0.14 0.88 0.06 0.9 0.06 0.87
5 · 10−3 0.11 0.84 0.05 0.92 0.04 0.91
4 · 10−3 0.08 1.09 0.04 0.95 0.03 0.93

Table 2. Convergence study of the method. The order of the method is given for the L1, L2

and L∞ norms.
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Figure 2. Free transport: comparison of the numerical solution for ∆x = 4 · 10−3 and the
exact solution (red) at time t=6.

3.2. Temperature gradient with collisions without electric field

We now consider the system equation (5) with collisions to validate the numerical scheme (29)-(34)-(37) tak-
ing into account the collisional part. The solution obtained with the scheme presented in this paper is compared
with the classical HLL scheme.

Consider the initial conditions f0(x, ζ, 0) =

√
2

π

ζ2

Tini(x)3/2
exp

(
− ζ2

2Tini(x)

)
,

f1(x, ζ, 0) = 0,

with

Tini(x) = 2− arctan(x)

and αei = 1. On the right and left boundaries, we use a Neumann boundary condition: the values of f0 and
f1 in the boundary ghost cells are set to the values in the corresponding real boundary cells. The energy range
chosen is [0, 12] with an energy step ∆ζ = 0.1 and the space range is [−40, 40] with a space step ∆x = 0.2.
In Figure 3, we compare the numerical solution obtained with the AP scheme (29)-(34)-(37). The solution
obtained with the Asymptotic-preserving scheme is displayed in continuous lines with the solution given by
HLL scheme in dashed lines at time 0.25 and 0.5. The Asymptotic-preserving numerical scheme and the HLL
scheme gives comparable results.

3.3. Temperature gradient in the diffusive regime without electric field

In this numerical test, the same initial and boundary conditions that in the test case 3.2 are chosen. However,
we consider a large collisional parameter and take αei = 104. The scheme (29)-(34)-(37) is verified in the diffusive
regime. The results are compared with the diffusion solution and with the one obtained with the HLL scheme.

In Figure 4, we compare the numerical solution obtained with the scheme (29)-(34)-(37). The results obtained
with the asymptotic-preserving scheme are displayed in continuous green lines with the solution given by HLL
scheme in continuous purple lines and the diffusion solution in dashed blue lines at time t=50, t=100, 500 and
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Figure 3. Temperature gradient: comparison of the temperature profile for the numerical
solution (AP) and for the HLL scheme (HLL) at time 0.25 and 0.5.

1000. The AP numerical scheme and the diffusion solution match perfectly while we remark for time t = 50
and t = 100 that the HLL scheme gives very inaccurate results. The results obtained with the HLL scheme at
time t = 500 and t = 1000 are completely wrong and are not displayed, however we notice that in the long time
regime the AP numerical scheme and the diffusion solution still match.

3.4. Discontinuous initial condition in the diffusive regime without electric field

In this case, a discontinuous initial condition in the diffusive regime without electric field is considered. The
results are compared with the diffusion equation solution and the HLL scheme. The energy range chosen is
[0, 6] with an energy step ∆ζ = 0.1 and the space range L=[−10, 10] with a space step ∆x = 5 · 10−2. Consider
the initial conditions


f0(x, ζ, 0) =


1 if x ≤ L/3,
0 if L/3 ≤ x ≤ 2L/3,

1 if L/3 ≤ x,
f1(x, ζ, 0) = 0,

with periodical boundary conditions and αei = 104. In Figure 5, we compare the numerical solution obtained
with the Asymptotic-preserving scheme displayed in red with the diffusion solution in dashed blue and the HLL
scheme in green at time t=200. The AP and diffusion solutions match perfectly while the HLL scheme is very
inaccurate. In Figure 6, the long time behaviour of the numerical solutions is considered. The AP scheme and
the diffusion solution are compared at time t=500, the results match.
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Figure 4. Temperature gradient in the diffusive limit: comparison of the temperature profile
of the asymptotic-preserving scheme (AP), the HLL scheme (HLL) and the diffusion solution
at time t=50, 100, 500 and 1000.

3.5. Relaxation of a Gaussian profile, in the homogeneous case in the diffusive regime
with electric field

We consider system (56) with collisions and the source term E
ζ (f0 − f2) to validate the numerical scheme

(62)-(64)-(65) in the diffusive limit. On the left and right boundaries, we use Neumann boundary conditions:
the values of f0 and f1 in the boundary ghost cells are set to the values in the corresponding real boundary
cells. Here αei = 104 and the energy range chosen is [0, 20] with an energy step ∆ζ = 10−2. Here we have
chosen E = 1 and considered the following initial conditions

 f0(ζ, 0) =

√
2

π
exp(−ζ

2

2
),

f1(ζ, 0) = 0.

(80)
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Figure 5. Comparison of the f0 profile for the asymptotic-preserving scheme (AP), for the
HLL scheme (HLL) and the diffusion solution at time t=200.
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Figure 6. Comparison of the f0 profile for the Asymptotic-preserving scheme (AP), and the
diffusion solution at time t=500.

In Figure 7, we compare the numerical solution obtained with the scheme (62)-(64)-(65) displayed in red
with the diffusion solution in dashed blue and the HLL scheme at time t=20. The asymptotic-preserving and
diffusion solutions match perfectly while the HLL scheme is very diffusive. In Figure 8, the results obtained
with the AP scheme and the diffusion solution are compared in the long time regime at time t=80.
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Figure 7. Relaxation of a Gaussian profile: comparison of the f0 profile for the asymptotic-
preserving scheme (AP), for the HLL scheme (HLL) and the diffusion solution at time t=20.
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Figure 8. Relaxation of a Gaussian profile: comparison of the f0 profile for the asymptotic-
preserving scheme (AP) and the diffusion solution at time t=80.

3.6. Relaxation of a Gaussian profile in the diffusive regime without electric field in the
case of a non-constant collisional parameter

In this example, the numerical scheme (29)-(34)-(37) is verified in the diffusive regime without electric field
in a inhomogeneous collisional plasma. In this case the coefficient αei is not constant and follows the linear
profile

αei(x) = (5x/8 + 15/2) · 103. (81)

Then αei(−4) = 5 · 103 and αei(4) = 104. On the left and right boundaries, we use Neumann boundary
conditions: the values of f0 and f1 in the boundary ghost cells are set to the values in the corresponding real
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boundary cells. The energy range chosen is [0, 8] with an energy step ∆ζ = 0.1 and the space range [−4, 4] with
a space step ∆x = 5 · 10−2. The initial conditions are the following f0(x, ζ, 0) = ζ2 exp(−x

2

2
),

f1(x, ζ, 0) = 0.
(82)

In Figure 9, we compare the numerical solution obtained with the asymptotic-preserving scheme displayed
in red with the diffusion solution in dashed blue at time t=150. In this case, the asymptotic-preserving and
diffusion solutions also match perfectly. The HLL scheme results are not given in Figure 9, since the final time
t=150 is important the HLL results are completely wrong.

-4 -2 0 2 4
x

0

0,2

0,4

0,6

0,8

1

f 0

Initial condition
AP
diffusion

Figure 9. Relaxation of a Gaussian profile in the case of a linear collisional parameter: com-
parison of the f0 profile for the asymptotic-preserving scheme (AP) and the diffusion solution
at time t=150.

4. Conclusion

In this work, we have proposed a numerical scheme for the electronic M1 model in the case without electric
field and in the homogeneous case. We have exhibited an approximate Riemann solver that satisfies the ad-
missibility conditions. Contrarily to the HLL scheme, the proposed numerical scheme is asymptotic-preserving
and recovers the correct diffusion equation in the diffusive limit. It has been shown, in the homogeneous case,
that the method presented, enables to include the source term −E(f0 − f2)/ζ, while a relaxation type method
seems inconvenient. In addition, the scheme is well-balanced, capturing the steady state considered. Several
numerical tests have been performed, it has been shown that the presented scheme behaves correctly in the
classical regime and in the diffusive limit. Indeed, while, the HLL scheme is very inaccurate in the diffusive
regime, the asymptotic-preserving scheme matches perfectly with the expected diffusion solution. Also, the
method correctly handles the case where the collisional parameter is not constant. The present study can be
extended to the general electronic M1 model (1). However, the correct treatment of the mixed-derivatives,
arising in the diffusive limit when considering the entire model is a challenging issue. This problem will be
investigated in a forthcoming separate study.
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