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Abstract. Angular moments closures are widely used in numerical solutions of kinetic equa-
tions. While in the strongly collisional limit they are providing a good approximation of the full
kinetic equation, their validity domain in the weakly collisional limit is unknown. This work is
devoted to define the validity domain of the M1 model and its extensions, the two populations
M1 and the M2 angular moments models for the collisionless kinetic physics applications. Three
typical kinetic plasmas effects are considered, which are the charged particle beams interaction,
the Landau damping and the electromagnetic wave absorption in an overdense semi-infinite
plasma. For each case, a perturbative analysis is performed and the dispersion relation is es-
tablished using the moments models. These relations are compared with those computed by
considering the Vlasov equation. The validity limits of each model are demonstrated.
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1 Introduction

From controlled thermonuclear fusion to space physics, spacecraft propulsion or gas lasers, appli-
cations of plasma physics are numerous and diversified. A detailed description of the collisionless
plasma dynamics is given by the kinetic Vlasov equation which describes the evolution of the
distribution function fα(~x,~v, t) for each particle species α. This function describes the prob-
ability of finding particles having the velocity ~v at the position ~x at time t. Such a kinetic
description is accurate but also computationally expensive for describing most of real physical
applications. An alternative way consists in considering a fluid description based on averaged
physical quantities. However, such a macroscopic description is sometimes inaccurate. For ex-
ample, in the context of inertial confinement fusion, the plasma particles may have an energy
distribution far from the thermodynamic equilibrium so that the fluid description is not adapted.
Moreover kinetic effects like the non local transport [3, 21], wave damping or the development
of instabilities [6] can be important over time scales shorter than the collisional time so that
fluid simulations are insufficient and kinetic codes have to be considered to capture the physical
processes. Kinetic codes are usually limited to time and length much shorter than those studied
with fluid simulations. It is therefore an important challenge to describe kinetic effects using
reduced kinetic codes operating on fluid time scales.

The angular moments models represent an alternative method situated between the kinetic
and the fluid models. They require computational times shorter than kinetic models ones and
provide results with a higher accuraccy than fluid models. They originate from an angular
moments average [15, 23] of the kinetic equations. There exist several moment models whose
differences come from the choice of the closure relation. The domains of validity of such interme-
diate models are not strictly defined especially in a weakly collisional limit, and some spurious
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effects may appear. For example, the widespread PN closure does not ensure the positivity of
the distribution function, but can be modified to give a nonnegative closure [11]. In this paper
we consider the M1 and M2 moments models [7] based on an entropy minimisation principle.
The entropy minimisation problems have been widely studied in [15, 23, 24, 26]. The underly-
ing distribution function is given by an exponential of a polynomial function depending on the
particle energy and it is therefore nonnegative. Moreover, these closures verify the fundamental
mathematical properties [10, 22] such as hyperbolicity and entropy dissipation. However, their
solutions could be rather different from the solution of the full kinetic equation. Moreover, from
the numerical point of view, even if the closure is well defined, computational challenges remain.
In particular, the resolution of the entropy minimization problem can be very computationally
costly and we refer to [1] for a specific treatment.

The M1 model is largely used in various applications such as radiative transfer [28, 2, 9] or
electronic transport [18]. It has been shown in [7] that the M1 model is very accurate in the
case of isotropic configurations or with configurations where one direction is dominant. However
the model loses precision in the case of an anisotropic configuration and in the limit where the
mean free path is larger than the characteristic length of the problem. The accuracy can be
improved by considering the two populations M1 model or the M2 model [7]. However, their
respective domains of validity are not defined either. The aim of this paper is to define the
validity domain of the M1, the two populations M1 and the M2 moments models for the kinetic
plasma physics applications. The purpose is to investigate if these three moments models are able
to capture and describe correctly the basic phenomena occuring in a collisionless plasma. We
consider here three classical kinetic effects, which are the interaction of a charged particle beams,
the Landau damping of a Langmuir plasma wave and the electromagnetic wave absorption
incident normally on a boundary of an overdense plasma. Historically, the two beams instability
was one of the first studied plasma physics problems [4, 13]. A beam of charged particles
propagates in a plasma generating an oscillating electric field exponentially increasing in time,
and reducing the beam kinetic energy. The collisionless damping of plasma waves was first
discovered theoretically by Landau [14] then demonstrated in laboratory [5, 20]. The latter
physical phenomenon corresponds to the collisionless absorption of an electromagnetic wave
incident on an overcritical plasma. A part of the wave energy is absorbed and transfered to the
plasma while the other part is reflected [25]. For these three phenomena, a perturbative analysis
is performed and the dispersion relation is established using the moments models. These relations
are compared in this paper with those obtained directly from the Vlasov equation, providing
the accuracy degree of the moments models.

The paper is organised as follows: first we introduce the M1, the two populations M1 and the
M2 moments models in Section 2. Then, Section 3 is devoted to the electron beams interaction.
A dispersion relation computed with the M1 model is compared with the one obtained with the
Vlasov equation. We highlight that the M1 model exactly captures the interaction phenomenon.
The Landau damping is presented in Section 4. In this case the M1 model captures the damping
qualitatively, but is not able to describe it correctly. On the contrary, the two M1 populations
model and the M2 model display results with a good accuracy. Then, the collisionless skin effect
is studied in Section 5. We show that the M1 model is not able to describe the absorption
phenomenon, while the two populations M1 model and the M2 model capture it qualitatively.
In order to perform an explicit calculation of the absorption rate, the two limiting cases of a cold
and hot electron plasma are studied corresponding to the low and high frequency skin effect [16].
We show that in the cold plasma limit the two populations M1 and the M2 moments models
give inaccurate absorption coefficients. In the opposite limit the two populations M1 model fails
in describing correctly the phenomenon while the M2 model provides an accurate result.

2



2 M1 and M2 angular moments models

This section provides a detailed description of the M1 model [18, 7], the two populations M1

model [28] and the M2 model [1, 12]. These three moments models are derived from the kinetic
Vlasov equation

∂tf(t, ~x,~v) + ~v.∇~xf(t, ~x,~v) +
q

m
( ~E(t, ~x) + ~v ∧ ~B(t, ~x)).∇~vf(t, ~x,~v) = 0 (1)

where ~E and ~B are the electric and magnetic fields. The constants q = −e and m are the
charge and the mass of electron. The electromagnetic fields are computed using the Maxwell’s
equations

∂ ~E

∂t
− c2∇~x × ~B = −

~j

ε0
, (2)

∇~x. ~E =
q

ε0
(ne − Zni), (3)

∂ ~B

∂t
+∇~x × ~E = 0, (4)

∇~x. ~B = 0 (5)

where ni = n0 is a constant density of single charged ions and the electron density ne is
given by

ne(~x, t) =

∫
R3

f(t, ~x,~v)d~v. (6)

The electron current ~j is defined by

~j(~x, t) = q

∫
R3

f(t, ~x,~v)~vd~v. (7)

2.1 M1 model

The electronic M1 model [18, 7] is derived performing an angular moment extraction from the
Vlasov equation (1). For the sake of clarity, we omit in the following, the ~x and t dependence
of the distribution function. If S2 is the unit sphere, ~Ω = ~v/|~v| represents the direction of
propagation of the particle. By setting ξ = |~v|, the distribution function f writes in the spherical
coordinates in the phase space f(~Ω, ξ). Three first angular moments of the distribution function
are given by

f0(ξ) = ξ2
∫
S2

f(~Ω, ξ)d~Ω, ~f1(ξ) = ξ2
∫
S2

f(~Ω, ξ)~Ωd~Ω, ¯̄f2(ξ) = ξ2
∫
S2

f(~Ω, ξ)~Ω⊗ ~Ωd~Ω. (8)

As performed in [27, 18, 7], the angular integration of the Vlasov equation (1) leads to the
following set of equations{

∂tf0(ξ) +∇~x.(ξ ~f1(ξ)) + q
m∂ξ(

~f1(ξ). ~E) = 0,

∂t ~f1(ξ) +∇~x.(ξ ¯̄f2(ξ)) + q
m∂ξ(

¯̄f2(ξ) ~E)− q
mξ (f0(ξ) ~E − ¯̄f2(ξ) ~E)− q

m(~f1 ∧ ~B) = 0.
(9)

We assume the unperturbed plasma is isotropic and homogeneous, and the perturbation is in
one direction (along the x -axis). In order to describe a perturbation, we select three orthogonal
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field components, which correspond to a P-polarized electromagnetic wave. The electromagnetic
field has the form

~E = (Ex(x), Ey(x), 0), ~B = (0, 0, Bz(x)). (10)

The fundamental point of the moments models is the definition of a closure, which writes
the highest moment as a function of the lower ones. This closure relation corresponds to an
approximation of the underlying distribution function, which the moments system is constructed
from. In the M1 model (9), we need to define ¯̄f2 as a function of f0 and ~f1. The closure relation
originates from an entropy minimization principle [15, 23]. The underlying distribution function
f is obtained as a solution of the following minimization problem

min
f≥0
{ H(f) / ∀ξ ∈ R+, ξ2

∫
S2

f(~Ω, ξ)d~Ω = f0(ξ), ξ
2

∫
S2

f(~Ω, ξ)~Ωd~Ω = ~f1(ξ) }, (11)

where H(f) is the Boltzmann entropy defined by

H(f) =

∫
S2

(f ln f − f)d~Ω. (12)

The solution of (11) writes [8, 19]

f(~Ω, ξ) = exp( a0(ξ) + ~a1(ξ) . ~Ω ), (13)

where a0(ξ) is a scalar and ~a1(ξ) a real valued vector. An important parameter is the
anisotropy parameter ~α defined with

~α =
~f1
f0
. (14)

Then the moment ¯̄f2 can be calculated [7, 9] as a function of f0 and ~f1

¯̄f2 = f0

(1− χ(~α)

2
¯̄Id +

3χ(~α)− 1

2

~f1

|~f1|
⊗

~f1

|~f1|

)
(15)

where χ(~α) is approximated [7] by

χ(~α) =
1 + ~α2 + ~α4

3
. (16)

The definition (15) enables to close the problem (9).

2.2 Two populations M1 model

The M1 model is well adapted to the case of near-isotropic configuration, where |f1| << f0
(|~α| << 1). In this case it is equivalent to the P1 model. It provides also a good approximation
in the case of one dominant direction (|~α| ≈ 1) [7]. However, for the other values of α, the M1

model may be not sufficiently accurate [7]. In order to improve the accuracy of the model in
intermediate cases, it was suggested to decompose the distribution function into two parts. One
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part for particles with positive velocities and another one for particles with negative velocities.
The total distribution function writes

f = f− + f+ (17)

where f− = f |vx<0 describes the particle with negative velocities and f+ = f |vx>0 the
particles with positive velocities.

We define the zeroth order angular moments f−0 and f+0 .

vy

vz

vx

~v

θ

ϕ

Figure 1: The coordinates system used for the calculation of angular moments of the electron
distribution function.

According to (8), the expressions for angular moments write

f+0 (ξ) = ξ2
∫ 2π

0

∫ π/2

0
f(ξ, ~Ω) sin(θ) dθdϕ, (18)

and

f−0 (ξ) = ξ2
∫ 2π

0

∫ π

π/2
f(ξ, ~Ω) sin(θ) dθdϕ. (19)

Similarly the first angular moments are defined as

~f1
+

(ξ) = ξ2
∫ 2π

0

∫ π/2

0
f(ξ, ~Ω) ~Ω sin(θ) dθdϕ, (20)

~f1
−

(ξ) = ξ2
∫ 2π

0

∫ π

π/2
f(ξ, ~Ω) ~Ω sin(θ) dθdϕ, (21)

where ~Ω = (cos θ, sin θ cosφ, sin θ sinφ), see Fig.1. Equations (9) are solved for each popu-
lation distribution. The sum of the two population distributions is considered to compute the
electron current ~j (7)

~j = q

∫ +∞

0
(~f1
−

+ ~f1
+

)ξdξ. (22)

This source term is considered to solve the Maxwell’s equations (2).
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2.3 M2 model

The M2 model, similarly to the M1 model is also based on an entropy minimization principle.
The difference lies in the fact that an additionnal angular moment is considered making this

model more accurate than the M1 model. Let us introduce the tensor of order three
¯̄̄
f3

¯̄̄
f3(ξ) = ξ2

∫
S2

f(~Ω, ξ) ~Ω⊗ ~Ω⊗ ~Ω d~Ω. (23)

The entropy minimisation principle for the M2 model [1, 12] implies that the underlying
distribution function writes

f(~Ω, ξ) = exp( a0(ξ) + ~a1(ξ) . ~Ω + ¯̄a2(ξ) : ~Ω⊗ ~Ω ), (24)

where a0(ξ) is a scalar, ~a1(ξ) a real valued vector and ¯̄a2(ξ) a real valued tensor of order two.
The notation ⊗ represents the tensor product and : is the two times contracted product.

The equations of the M2 model write
∂tf0 +∇~x.(ξ ~f1) + q

m∂ξ(
~f1. ~E) = 0,

∂t ~f1 +∇~x.(ξ ¯̄f2) + q
m∂ξ(

¯̄f2 ~E)− q
mξ (f0 ~E − ¯̄f2 ~E) = 0,

∂t
¯̄f2 +∇~x.(ξ

¯̄̄
f3) + q

m∂ξ(
¯̄̄
f3 ~E)− q

mξ (~f1 ⊗ ~E + 2
¯̄̄
f3 ~E + ~E ⊗ ~f1) = 0.

(25)

The contribution of the self-consistent magnetic field leads to superior order terms in the
perturbative analysis and can be neglected because the unperturbed distribution function is
isotropic.

3 Particle beam interaction

In this section we study the interaction of electron beams using the M1 model. We demonstrate
that the dispersion relation obtained from the M1 model agrees exactly with the one obtained
from the Vlasov equation.

3.1 Dispersion relation for the M1 model in the one-dimensional electrostatic
case

In the electrostatic case, only one component of the electric field is considered (Ex). The system
of equations (9) and the Poisson equation read as

∂tf0 + ∂x(ξf1x)− ∂ξ(Exf1x) = 0,

∂tf1x + ∂x(ξf2xx)− ∂ξ(Exf2xx) + (f0−f2xx)Ex
ξ = 0,

∂xEx = 1−
∫∞
0 f0(ξ)dξ,

(26)

where the time is normalized to the inverse of the electron plasma frequency ωpe =
√
e2n0/mε0,

the velocity is normalized to the thermal velocity vth =
√
T/m, the length to the Debye length

λD = vth/ωpe, the electric field is normalized to Ep = mvthωpe/e and ε0 is the vacuum dielectric
permittivity. Only one component of the closure relation (15) is non zero. According to equation
(14)

6



f2xx = χ(αx)f0.

Let us consider a perturbation of the electric field δEx and the corresponding perturbation
of the zeroth and first moment δf0 and δf1x

E(t, x) = 0 + δEx(t, x),
f0(t, x, ξ) = F0(ξ) + δf0(t, x, ξ),
f1x(t, x, ξ) = F1x(ξ) + δf1x(t, x, ξ),

(27)

where F0, F1x correspond to the homogeneous stationary solution of system (26). For the
sake of clarity, we omit in the following the arguments t, x and ξ in the equations. The linearized
system (26) reads


∂tδf0 + ∂x(ξδf1x)− ∂ξ(F1xδEx) = 0,

∂tδf1x + ∂x ((χ(F)− χ′(F)F)ξ δf0 + χ′(F)ξ δf1x)− ∂ξ(F2xxδEx) + (F0−F2xx)δEx
ξ = 0,

∂xδEx = −
∫∞
0 δf0(ξ)dξ,

(28)

where F2xx = χ(F)F0 and F = F1x/F0. We define the Fourier transform f̂ of a function f
as

f̂(ω, k) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(t, x)ei(ωt−kx)dxdt. (29)

The Fourier transform of the first and second equations of (28) results in

−iωδf̂0 + ikξδf̂1x = ∂ξ(F1xδÊx), (30)

−iωδf̂1x + ikξ(χ(F)− χ′(F)F)δf̂0 + ikξχ′(F)δf̂1x = ∂ξ(χ(F)F0δÊx)− (1− χ(F))F0δÊ

ξ
. (31)

For the sake of simplicity, in the following the quantities δf̂ are replaced by δf . Inserting
(30) into (31) gives

δf0 = − 1

iD

[
(ω − kξχ′(F))∂ξF1 + kξ∂ξ(χ(F)F0)− k(1− χ(F))F0

]
δE, (32)

with

D = ω2 − ωkξχ′(F)− k2ξ2[χ(F)− χ′(F)F ].

The Fourier transform of the third equation of (26) gives ikδE = −
∫∞
0 δf0(ξ)dξ. Then the

integration of (32) leads to

1 +

∫ ∞
0

1

Dk

[
(ω − kξχ′(F))∂ξF1 + kξ∂ξ(χ(F)F0)− k(1− χ(F))F0

]
dξ = 0. (33)

This equation is the general formulation of the dispersion relation for the M1 model in the
one dimentional electrostatic case. It is applied to the electron beams in the next subsection
and to the Landau damping in the next section.
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3.2 Electron beams

Let us consider the electron distribution function as a sum of n beams of particles aligned along
the x-axis. The distribution function writes

f(x, v) =
1

n

n∑
l=1

δ(v − vl),

where vl = εl|vl| = εlξl, with εl = ±1 depending on the direction of propagation of electrons.
Now, the corresponding zeroth and first moments F0, F1 are given by,

F0(x, ξ) = ξ2
1

n

n∑
l=1

δ(ξ − ξl), F1(x, ξ) = ξ2
1

n

n∑
l=1

εlδ(ξ − ξl).

After a simple computation using (16) and the definition of F , we obtain that F = εl,
χ(F) = 1 and χ′(F) = 2εl for ξ = ξl. Using the previous values in (33), we obtain that
D = (ω − kεlξl)

2 = (ω − kvl)
2, for ξ = ξl, and the value of the integral in (33) becomes

− 1
n

∑n
l=1 v

2
l /(ω − kvl)2. We can rewrite the dispersion relation (33) as,

1− 1

n

n∑
l=1

v2l
(ω − kvl)2

= 0, (34)

which agrees exactly with the dispersion relation obtained from the Vlasov equation.

In this part we have shown that the M1 model correctly describes the particle beams in-
teraction. In the case of different energy beams, the dispersion relation obtained using the M1

model coincides exactly with the one obtained from the Vlasov equation. It is then evident that
more accurate models such as the two populations M1 model or the M2 model give the same
dispersion equation.
We study in the next part, the Landau damping. It is shown that even if the M1 model captures
qualitatively the phenomenon, it is not accurate enough to describe it quantitatively.

4 Dispersion of an electron plasma wave

Landau damping is a well-known process in plasma physics, which also presents a large interest
in some other fields such as galaxy dynamics [17]. The aim of this part is to study if the M1

model is able to describe the electron plasma wave including the Landau damping effect. We
suppose that the equilibrium solution to the Vlasov equation is given by a Maxwellian function

f(ξ) = (2π)−3/2 exp(−ξ2/2). (35)

The dispersion relation is established from the Vlasov equation in [5]

ω =
√

1 + 3k2 − i

k3

√
π

8
exp(− 1

2k2
), (36)

for small k << 1. The negative imaginary part corresponds to the Landau wave damping.
In the following, we perform the dispersion analysis of the Landau wave damping using the

three moments models.
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4.1 M1 model applied to the electron plasma wave

In this case, the two first moments are given by,

F0(ξ) = ξ2
(

2

π

) 1
2

exp(−ξ
2

2
), F1x(ξ) = 0, (37)

with F = 0, χ(F) = 1/3 and χ′(F) = 0. Using the previous values in (33) we obtain that
D = ω2 − k2ξ2/3 and the dispersion relation (33) writes as,

1 +

∫ ∞
0

ξ∂ξF0(ξ)− 2F0(ξ)

3ω2 − k2ξ2
dξ = 1−

(
2

π

) 1
2
∫ ∞
0

ξ4 exp(− ξ2

2 )

3ω2 − k2ξ2
dξ = 0.

Using the Landau theory [5] we obtain an approximate dispersion relation assuming a large
phase velocity ω/k >> 1 and a weak damping Im(ω) << Re(ω) ≈ 1. The pole ω/k lies near
the real ξ axis, and by using a contour prescribed by Landau with a small semicircle around the
pole, the residue formula makes the previous equation equal to

1 = −
√

2√
πk2

P ∫ ∞
0

ξ4 exp(− ξ2

2 )(
ξ −

√
3ω
k

)(
ξ +

√
3ω
k

)dξ + iπ
ξ4 exp(− ξ2

2 )

ξ +
√
3ω
k

∣∣∣∣∣
ξ=
√
3ω
k

 (38)

where P stands for the Cauchy principal value. As the main contribution to the integral in
the case of plasma waves comes from velocities ξ << ω/k, we perform a Taylor expansion for
the rational fraction in

1

ξ2 −
(√

3ω
k

)2 = −
(

k√
3ω

)2 1

1− ξ2(√
3ω
k

)2

≈ −
(

k√
3ω

)2

1 +
ξ2(√
3ω
k

)2
 . (39)

Equation (38) then reads

1 =
1

ω2
+

5

3

k2

ω4
− i
√

2 π

k2
ξ4 exp(− ξ2

2 )

ξ +
√
3ω
k

∣∣∣∣∣
ξ=
√
3ω
k

. (40)

We consider the imaginary part of ω as a small perturbation and write

ω = ω0 + iδω (41)

with δω << ω0. Inserting (41) into (40), neglecting the terms of order (δω)2 leads to

ω2
0 + 2iδωω0 = 1 +

5k2

3ω2
0

(1− 2iδω

ω0
)− if(ω0 + iδω, k). (42)

where f(ω0 + iδω, k) =
3
√

6π(ω0 + iδω)5

k5
exp(

−3ω2
0

k2
) exp(−6iδωω0

k2
).

Considering the following linearisation

f(ω0 + iδω, k) = f(ω0, k) + iδωf ′(ω0, k) (43)

into (42) and using the fact δω << ω0 gives

ω2
0 = 1 + 5k2/3 (44)
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and

δω = −3
√

6π

4k5
exp(−5

2
) exp(− 3

2k2
) ≈ −0.267

k5
exp(− 3

2k2
). (45)

The dissipation found by the M1 model (45) is signicantly different from the Landau dissi-
pation term (36) computed with the Vlasov equation. Indeed the pre-exponential factor varies
in 0.267/k5 instead of 0.1398/k3 and the coefficient in the exponential is 1/2k2 instead of 3/2k2.
Figure 2 displays the Landau dissipation coefficient as a function of k for the M1 model (dotted
curve) and the Vlasov equation (solid curve). The M1 model clearly underestimates the Landau
dissipation. This figure highlights the impossibility for the M1 model to accurately model the
Landau damping.

4.2 Two populations M1 model: plasma wave dispersion

We propose here to study the possibility to model the Landau damping with the two populations
M1 model. The stationary solution for the two parts of the distribution function reads

f±(v) =
1

(2π)
3
2

exp(−v
2

2
)H(± cos(θ)),

where H is the Heaviside function. The corresponding reduced distribution functions are given
by,

F±0 (ξ) = ξ2
(

1

2π

) 1
2

exp(−ξ
2

2
), F±1x(ξ) = ±1

2
F±0 (ξ). (46)

The anisotropic coefficients are calculated using (16), χ(F−) = χ(F+) = 7/16 and χ′(F−) =
−χ′(F+) = −1/2. The dispersion relation (33) writes as,

0 = 1 +

∫ ∞
0

1

β+k

[
(ω − kξχ′(F+))∂ξF

+
1 + kξ∂ξ(χ(F+)F+

0 )− k(1− χ(F+))F+
0

]
dξ

+

∫ ∞
0

1

β−k

[
(ω − kξχ′(F−))∂ξF

−
1 + kξ∂ξ(χ(F−)F−0 )− k(1− χ(F−))F−0

]
dξ,

= 1 +

∫ ∞
0

1

k

[
0.661ω2ξ2 + 0.079 ξ6k2 + 0.063 k2ξ4 − 0.887 ξ4ω2

(ω2 − ω2
1k

2ξ2)(ω2 − ω2
2k

2ξ2)

]
F+
0 dξ,

where β± ≈ ω2 − 0.199k2ξ2 ∓ 0.488 ωkξ ≈ (ω ± ω1kξ)(ω ∓ ω2kξ) with ω1 = 0.265 and
ω2 = 0.753.

As the phase velocity ω/k >> ξ, we perform a Taylor expansion of the previous expression
to obtain the dispersion relation as for the M1 model

ω =
√

1 + 2.916k2 − i
(

0.19

k3
+

0.085

k5

)
exp(−0.88

k2
),

which is close to the dispersion relation (36) obtained from the Vlasov equation. The real part
of the dispersion relation is almost exact. Considering the imaginary part, the pre-exponential
factor varies in (0.19/k3+0.085/k5) instead of 0.1398/k3 and the coefficient in the exponential is
0.88/2k2 instead of 3/2k2. The representation of the dissipation coefficient in Fig.2 shows that
the two populations M1 model gives a more accurate result than the previous model for k < 0.6.
The two populations M1 model is then a good candidate to model the Landau damping.

10



4.3 M2 model

In this part the dispersion relation is established using the M2 model and compared to the one
obtained with the Vlasov equation. It is shown that the M2 model gives more accurate results
than the two populations M1 model.

In the one dimensional electrostatic case, after normalisation the M2 model (25) writes
∂f0 + ξ∂x(f1x)− Ex∂ξ(f1x) = 0,

∂tf1x + ξ∂x(f2xx)− Ex∂ξ(f2xx) + Ex
ξ (f0 − f2xx) = 0,

∂tf2xx + ξ∂x(f3xxx)− Ex∂ξ(f3xxx) + Ex
ξ (2f1x + 2f3xxx) = 0.

(47)

The derivation is similar to the one performed for the M1 model with an additionnal equation.
The term f2xx needs to be developed with the perturbative analysis

f2xx = F2xx + δf2xx. (48)

In this case F2xx can be calculated by using the equilibrium state (35)

F2xx = F0/3 (49)

with F0 defined in equation (37). The term f3xxx must be expressed as a function of the
other terms. In opposite to the M1 model closure (15), the M2 model closure cannot be given
explicitly. Nevertheless, using [15, 10, 1] and the equilibrium state (35), the first terms of the
development of f3 are determined. The linearisation of f3xxx results in

f3xxx = 0 +
3

5
δf1x. (50)

Then the linearisation of (47) gives
∂tδf0 + ξ∂x(δf1x),
∂tδf1x + ξ∂x(δf2xx)− 1

3∂ξ(δExF0) + 2
3ξ δExF0 = 0,

∂tδf2xx + 3
5ξ∂x(δf1x) = 0.

(51)

Following a development similar to the one performed for the M1 model, the dispersion
relation for the M2 model writes

1 =
1

3

√
2

π

∫ +∞

0

ξ4

ω2 − k2ξ2λ
exp(−ξ

2

2
) dξ, (52)

where the coefficient λ = 3/5.

Using a contour prescribed by Landau with a small semicircle around the pole, the residue
formula applied to the previous equation leads to,

1 =
1

3

√
2

π

P ∫ ∞
0

ξ4 exp(− ξ2

2 )

ω2 − k2ξ2λ
dξ − iπ

2ωkλ
ξ4 exp(−ξ

2

2
)

∣∣∣∣
ω

k
√
λ

 . (53)

As the phase velocity ω/k >> ξ, the rational fraction is expanded with a Taylor series

1

ω2 − k2ξ2λ
=

1

ω2

[
1 +

k2ξ2λ

ω2

]
. (54)
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Then the dispersion relation for the M2 model reads.

ω =
√

1 + 3k2 − i0.123

k5
exp(−1.667

2k2
). (55)

The real part of the dispersion relation is the same as the one obtained with the Vlasov
equation. The imaginary part is different, the pre-exponential factor varies in 0.123/k5 instead
of 0.1398/k3 and the coefficient in the exponential is 1.667/2k2 instead of 3/2k2 but its repre-
sentation in figure 2 shows a good accuracy of the model.

Figure 2: Representation of the dissipation coefficient as a function of k for the Vlasov equation
and for the M1, two populations M1 and M2 models.

In conclusion, the dispersion and dissipation of the plasma wave found by using the M1

model are shown to be inaccurate. One notices in Fig.2 a difference of behavior between the M1

model and the Vlasov equation. On the contrary, the two populations M1 model gives much
better results with the dissipation term close to the Vlasov dissipation. The M2 model gives
the exact real part of the dispersion relation and it reproduces more accurately than the two
populations M1 model the dissipation.

5 Collisionless skin effect

In contrast to the electrostatic plasma waves, the electromagnetic waves are not damped in a
homogeneous collisionless plasma. However, the dissipation appears if the plasma is inhomoge-
neous. We consider here the case of a plane electromagnetic wave, which is normally incident

12



on a semi-infinite, overcritical plasma. Here the wave absorption is due to the electrons re-
flecting from the plasma boundary in a skin layer. The aim of this part is to study how the
moments models are able to model such a more complicated situation with an electromagnetic
field. The conductivity and absorption coefficient obtained with the M1, two populations M1

and M2 models are compared to the conductivity and absorption coefficient obtained with the
Vlasov equation. We consider a low amplitude electromagnetic wave of a frequency ω assuming
the linear approach.

Consider a semi-infinite plasma with an electronic density n0 higher than the critical density
nc = mε0ω

2/e2. The electromagnetic wave is reflected at the vacuum plasma interface. We
propose here to compute the fraction of wave energy absorbed in the plasma [25]. There are two
components of the electromagnetic fields Ey and Bz. We suppose the Debye length λDe much
smaller than the penetration depth and then the electrons are reflected specularly at x = 0. In
order to apply the Fourier transform we extend the plasma to the whole space by assuming that
an electron coming from x > 0, which is reflected in x = 0, comes from the fictive region x < 0.
The study is then extended to the entire space. The electrostatic field Ey is extended as an even
function

Ey(x) = Ey(−x). (56)

The Faraday equation gives

∂Bz
∂t

= −∂Ey
∂x

(57)

the magnetic field is then to be extended as an odd function

Bz(x) = −Bz(−x). (58)

In this model the electric field is continuous at the surface x = 0 but not its first derivative
nor the magnetic field. As introduced in [25], the ratio of the electric and magnetic fields at the
plasma boundary is characterized by the surface impedance E(0)/B(0) = Z

Z =
iω

cπ

∫ +∞

−∞

dk
ω2

c2
− k2 + iωµ0σyy

. (59)

where σ is the plasma conductivity. Knowing the impedance one can calculate the absorption
coefficient

A =
4Re(Z)

|1 + Z|2
(60)

which is related to the real part of the impedance. We suppose that the equilibrium solution
is given by the Maxwellian function (35).

5.1 M1 model for the plasma skin effect

In this part, the conductivity σ and the absorption coefficient A are computed with the M1

model. We show in this section that the M1 model is not able to capture the absorption phe-
nomenon.

There is no electromagnetic field and no electron current in the unperturbed plasma. We
consider solutions with the perturbation theory. The angular moments are expanded
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f0(t, x, ξ) = F0(ξ) + δf0(t, x, ξ), (61)

f1x(t, x, ξ) = F1x(ξ) + δf1x(t, x, ξ), (62)

f1y(t, x, ξ) = F1y(ξ) + δf1y(t, x, ξ). (63)

where F0 and F1x are given in (37) and F1y = 0. The following system corresponds to the
M1 linearised equations 

∂δf0
∂t

+ ξ
∂δf1x
∂x

= 0,

∂δf1x
∂t

+
ξ

3

∂δf0
∂x

= 0,

∂δf1y
∂t

+
qδEy
3m

∂F0

∂ξ
− 2qδEyF0

3mξ
= 0.

(64)

The Fourier transform of the last equation of (64) results in an explicit solution for f1y

δf1y =
iq

mω

[2F0

3ξ
− 1

3

∂F0

∂ξ

]
δEy. (65)

Considering (22) and (65), the electric current is calculated

jy =
iq2

mω

∫
R+

[2F0

3
− ξ

3

∂F0

∂ξ

]
dξ δEy. (66)

Introducing the conductivity tensor σ such that jy = σyyδEy, the integration by part in
equation (66) provides

σyy =
ie2n0
mω

. (67)

Inserting this expression into equation (59) one obtains the impedance without any real part.
Correspondingly there is no absorption,

A = 0. (68)

Therefore, the M1 model is not able to correctly model the absorption phenomenon. After
linearisation of the M1 model, we note there is no contribution of the space derivative in the
third equation of (64). Then the conductivity (67) does not depend on the wave number k and
there is no absorption. This is an important result showing a limitation in the M1 model for
collisionless plasma physics applications. More accurate models need to be used for studies of
the electromagnetic wave absorption. The aim of the next section is to make a calculation using
the two populations M1 model.

5.2 Two populations M1 model

Here, the conductivity and the absorption coefficient are calculated using the two populations
M1 model. We show that this model is able to model the absorption phenomenon but does not
capture it quantitatively. In this case the first order moments in the perturbative development
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are given by (46) and F+
1y = F−1y = 0.

The linearisation of the two populations M1 model leads to

∂δf±1y
∂t

∓ ξ(3χ− 1)
∂δf±1y
∂x

+
q(1− χ)δEy

2m

∂F±0
∂ξ
− q(1 + χ)F±0 δEy

2mξ
± qF±0 Bz

2m
= 0 (69)

with χ = 7/16. The Fourier transform of equation (69) results in

δf±1y =
q

2m

i
[
(1+χ)F±0

ξ − (1− χ)
∂F±0
∂ξ ∓

F±0 k

ω

]
δEy

ω ± ξ(3χ− 1)k
. (70)

Using the definition of the electric current (22) and the definition of the conductivity in the
previous section one obtains

σyy = i
q2

2m

∫
R+

[ (1+χ)F0

ξ − (1− χ)∂F0
∂ξ −

F0k
ω

ω + ξ(3χ− 1)k
+

(1+χ)F0

ξ − (1− χ)∂F0
∂ξ + F0k

ω

ω − ξ(3χ− 1)k

]
ξdξ. (71)

The calculation of the previous equation leads to

σyy =
iω2
peε0√

2πv3th

∫
R

−1
2 + 3

2χ+ kξ
2ω + ξ2(1−χ)

2v2th

ω − ξ(3χ− 1)k
ξ2 exp(− ξ2

2v2th
)dξ. (72)

The conductivity (72) can not be evaluated analytically. We consider the two limiting cases
ω/k << vth and ω/k >> vth.

5.2.1 Hot electron case

Following the method introduced in the previous section for the calculation of the integral
in expression (72) in the limit ω/k << vth one obtains the following expression for the plasma
conductivity

σyy =
iω2
peε0√

2πv3thk
3

[
−

4v2thk
2

(3χ− 1)4
− iπω2[(3χ− 1)2 + 1]

2(3χ− 1)4

]
. (73)

It has to be compared to the one obtained with the Vlasov equation σV lasovyy

σV lasovyy =
iω2
peε0√

2πvthk

[ω√2π

kvth
− iπ

]
. (74)

In contrast to the M1 model case, the conductivity in this case depends on the wave number
k. This difference with the M1 model originates from equation (69) where there is a contri-
bution of the space derivative, which corresponds to the spatial dispersion. Nevertheless the
conductivity obtained with the two populations M1 model is different from the one obtained
with the Vlasov equation. Indeed, ignoring the constant values, the real part of the conductivity
varies in ω2

pe/vthk instead of ω2
peω/v

2
thk

2 for the Vlasov equation and the imaginary part varies
in ω2

peω
2/v3thk

3 instead of ω2
pe/vthk for the Vlasov equation.

15



Using the fact that ω << kvth the calculation of the impedance Z leads to

Z = −2iω

cπ

∫ +∞

0

dk

k2 − i K̃
k3

(75)

with

K̃ =
πω3ω2

pe[(3χ− 1)2 + 1]

2
√

2πv3thc
2(3χ− 1)4

. (76)

The impedance computation results in

Z =
2ωe−i

2π
5

5 sin(π5 )c
5
√
K̃
. (77)

Inserting equation (77) into the definition of the absorption coefficient equation (60) leads
to

A =

K1

( ω

ωpe

) 2
5
(vth
c

) 3
5

[
1 +

K1

4

( ω

ωpe

) 2
5
(vth
c

) 3
5
]2

+
[K1

4

( ω

ωpe

) 2
5
(vth
c

) 3
5
]2 (78)

with

K1 =
8 cos(2π5 )

5 sin(π5 )

(2
√

2π(3χ− 1)4

π(3χ− 1)2 + 1

) 1
5 ≈ 0.434. (79)

This absorption coefficient has to be compared to the one obtained with the Vlasov equation

AV lasov =

K2

( ω

ωpe

) 2
3
(vth
c

) 1
3

[
1 +

K2

4

( ω

ωpe

) 2
3
(vth
c

) 1
3
]2

+
[K2

4

( ω

ωpe

) 2
3
(vth
c

) 1
3
]2 (80)

with

K2 =
16
√

3

9

( 2

π

) 1
6

cos(
π

3
) ≈ 1.428. (81)

The coefficient ω/ωpe varies as the power 2/5 instead of 2/3 for the Vlasov equation and
vth/c varies as the power 3/5 instead of 1/3 for the Vlasov equation.

5.2.2 Cold electron case

We now explore the limit ω >> kvth, where the conductivity equation (72) gives

σyy =
iω2
peε0√

2πv3thk
3

[(3χ+ 1)
√

2πk3v3th
2ω

− iπω4(1− χ)

(3χ− 1)4v2thk
2

exp
(
− ω2

2v2thk
2(3χ− 1)2

)]
. (82)

This expression has to be compared with the one obtained with the Vlasov equation
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σV lasovyy =
iω2
peε0

vthk
√

2π

[√2πkvth
ω

− iπ exp
(
− ω2

2v2thk
2

)]
. (83)

Here, the real part of the conductivity varies as ω2
pe/ω similarly to the Vlasov equation but

the imaginary part varies as ω2
peω

4/v5thk
5 instead of ω2

pe/vthk for the Vlasov equation. We also
observe for the two populations M1 model, a presence of the term (3χ− 1)2 in the exponential
factor instead of 1.

Inserting equation (82) into the impedance equation (59) results in

Z =
6ω6ω2

peβ

c3v5th
√

2π

(√2vth(3χ− 1)

ω

)8
− iω√

ω2
peα
′ − ω2

. (84)

Using the definition (60), the absorption coefficient is

AM1 =
K3

(vth
c

)3(ωpe
ω

)2
[
1 +

K3

4

(vth
c

)3(ωpe
ω

)2]2
+
[ω2

pe

ω2
0

α′ − 1
]− 1

2

(85)

where K3 and α′ are given by

K3 =
384(3χ− 1)4(1− χ)√

2π
≈ 0.822, (86)

α′ =
(3χ− 1)

2
≈ 0.156. (87)

This expression has to be compared with the one obtained with the Vlasov equation [25]

AV lasov =
K4

(vth
c

)3(ωpe
ω

)2
[
1 +

K4

4

(vth
c

)3(ωpe
ω

)2]2
+
[ω2

pe

ω2
0

− 1
]− 1

2

(88)

with

K4 =
16√
2π
≈ 6.383. (89)

The two expressions of the absorption coefficient are similar but the major difference orig-
inates from the parameter α′ in the denominator of (85). The coefficient ω/ωpe varies as the
power 2 and vth/c varies as the power 3 exactly like in the Vlasov absorption coefficient. The
parameter α′ in the denominator of the two populations M1 model absorption makes a sig-
nificant difference with the Vlasov equation absorption coefficient. While a pole is reached for
ω/ωpe = 1 for the Vlasov equation, the pole is reached when ωα′/ωpe = 1 for the two populations
M1 model.
Even if in both limits the absorption phenomenon is captured qualitatively, the results are not
satisfactory. This shows the limits of using the two populations M1 model for studying the laser
plasma absorption. The aim of the next part is to see if these results can be improved using the
M2 model.
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5.3 M2 model

In this part the conductivity and the absorption coefficient are calculated with the M2 model.

In this case the first order moments in the perturbative development F1x, F1y, F2xx, F2xy

and F2yy are calculated using (8)

F1x = F1y = 0, (90)

F2xx =
F0

3
, F2xy = 0, F2yy =

F0

3
(91)

where F0 is given by equation (37). On the contrary to the M1 model closure (15), the
M2 model closure cannot be given explicitly [1]. Nevertheless, only the component f3xyx of the
tensor f3 is required in this study. Using [1, 15, 10], one can show that the linearisation of f3xyx
around the equilibrium state (35) gives

f3xyx = 0 +
δf1y

5
. (92)

The linearisation of the M2 model (25) leads to

∂tδf1y + ∂x(ξδf2xy) +
q

3m
∂ξ(F0δEy)−

2qδEyF0

3mξ
= 0. (93)

Performing a Fourier transform of the previous equation one finds

δf1y = −iqδEy
3m

∂F0

∂ξ
− 2

F0

ξ

ω − ξ2k2

5ω

. (94)

Following the method introduced in the two populations M1 model section, one obtains the
conductivity

σyy =
iω2
peε0ω

3v5th

√
2

π

P ∫ ∞
0

ξ4 exp(− ξ2

2v2th
)

ω2 − k2ξ2λ1
dξ − iπω3

2k5 3
√
λ1

exp (
−ω2

2k2λ1v2th
)

 (95)

where λ1 = 1/5.

The integral in this expression cannot be calculated analytically. In order to perform the
complete calculation, two limiting cases are considered: ω/k << vth and ω/k >> vth.

5.3.1 Hot electron case

Following the method introduced for the two populations M1 model, the conductivity is

σyy =
iω2
peε0ω

3v5th
√
π

[
−
v3th
k2
− iπω3

λ
√

2λk5

]
(96)

This expression has to be compared with the one obtained with the Vlasov equation σV lasovyy

(74). Ignoring the constant values, the real part of the conductivity varies in ω2
peω/v

2
thk

2 exactly
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like for the Vlasov equation and the imaginary part varies in ω2
peω

4/v5thk
5 instead of ω2

pe/vthk
for the Vlasov equation.

The expression for the M2 model absorption coefficient reads

A =

K5

( ω

ωpe

) 2
7
(vth
c

) 5
7

[
1 +

K5

4

( ω

ωpe

) 2
7
(vth
c

) 5
7
]2

+
[K5

4

( ω

ωpe

) 2
7
(vth
c

) 5
7
]2 (97)

with

K5 =
49.651λ2

√
λ cos(3π7 )

π
√

2π
≈ 0.025. (98)

The coefficient ω/ωpe varies as the power 2/7 instead of 2/3 for the Vlasov equation and
vth/c varies as the power 5/7 instead of 1/3 for the Vlasov equation.

5.3.2 Cold electron case

In the limit ω >> kvth, the conductivity (95) reads

σyy =
iω2
peε0

v5th

[v5th
ω
− iω4√π
k53λ2

√
2λ

exp(− ω2

2k2λv2th
)
]

(99)

This expression has to be compared with the one obtained with the Vlasov equation (83). In
this case the real part of the conductivity varies in ω2

pe/ω like for the Vlasov equation. This good
behavior was already obtained with the two populations M1 model. The imaginary part varies as
ω2
peω

4/v5thk
5 like for the two populations M1 model, instead of ω2

pe/vthk for the Vlasov equation
but the exponential factor is obtained using the M2 model contrarily to the two populations M1

model.

The expression for the M2 model absorption coefficient reads

A =
K6

(vth
c

)3(ωpe
ω

)2
[
1 +

K6

4

(vth
c

)3(ωpe
ω

)2]2
+
[ω2

pe

ω2
− 1
]− 1

2

(100)

with

K6 =
128

5
√

10π
≈ 4.567. (101)

This expression is compared with the one obtained from the Vlasov equation (88). The
coefficient ω/ωpe varies as the power 2 and vth/c varies as the power 3 exactly like the Vlasov
equation absorption coefficient. In opposite to the two populations M1 model, the pole is reached
at ω/ωpe = 1 like for the Vlasov equation. In this limit, one observes the advantage in using the
M2 model compared to the two populations M1 model.

The calculation of the impedance Z, has been performed using the conductivity expressions
established in the hot and cold electron limits ω/k << vth and ω/k >> vth. However, equation
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(59), implies the integration over all k from minus infinity to infinity. We can consider that the
calculation of the impedance, using equation (59), holds if the main contribution of the integral
comes from a set of wave numbers k where the limiting expressions for the conductivity are valid.
In order to check this assumption, the parameters ω/ωpe and vth/c are fixed and the expression
in the integral (59) is analyzed as a function of k.
We present here an example with ω/ωpe = 0.1 and vth/c = 0.8 to illustrate how one can validate
our approach for these parameters. The same steps can be used for any choice of parameters in
order to verify if the calculated absorption is valid. The modulus integrand of the impedance for
the Vlasov equation, the M2 and M1 two populations models are displayed in Fig.3, using the
expressions derived in the limit ω/k << vth. In this case the dimensionless wave number kc/ωpe
must be larger than (ω/ωpe)/(vth/c) = 0.125. Indeed, according to Fig.3 the main contribution
to the integral comes from a set of wave numbers where the conductivity expressions are valid.
Moreover, the position and the shape of integrand in the case of M2 model agrees well with the
Vlasov result.

Figure 3: Representation of the modulus integrand of the impendance (59) as a function of k in
the limit ω/k << vth in the case ω/ωpe = 0.1 and vth/c = 0.8. The modulus integrand has been
multiplied by a factor 0.1 for the M2 model and by 0.0025 for the M1 two populations model.

A second example is displayed in Fig.4, with ω/ωpe = 0.3 and vth/c = 0.1 using the expres-
sions established in the limit ω/k >> vth. In this case, the dimensionless wave number kc/ωpe
must be smaller than (ω/ωpe)/(vth/c) = 3. Indeed, one can verify in Fig.4 that the main con-
tribution to the integral comes from a set of wave numbers where the conductivity expressions
are valid.

In conclusion, it has been shown that the M1 model is not able to model the skin effect of
an electromagnetic wave in an overdense plasma. In the limit ω/k << vth, the two populations
M1 and the M2 moments models both capture the absorption phenomenon qualitatively, but do
not describe it correctly. In the opposite limit ω/k >> vth, the absorption phenomenon is not
captured correctly by the two populations M1 model. The M2 model, on the contrary, correctly
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Figure 4: Representation of the modulus integrand of the impendance coefficient as a function
of wave number in the limit ω/k >> vth in the case ω/ωpe = 0.3 and vth/c = 0.1.

captures the phenomenon and the absorption expression obtained is very close to the one followed
from the Vlasov equation. This study shows the limits of the three models for studies of the
laser plasma absorption. Higher moments models must therefore be used to correctly describe
this phenomenon. In the hot electron lmit, the M3 model could be tested but the calculation is
beyond the scope of this study.

6 Conclusion

The particle beams interaction, Landau damping and collisionless skin effect have been studied
using the M1, the two populations M1 and M2 moments models. By analytically deriving
the dispersion relations, we have demonstrated that the particle beams interaction is correctly
captured by the moments models. The Landau damping is also captured by the three models,
but the M1 model is inaccurate while the two populations M1 and M2 moments models describe
it accurately. The electromagnetic wave absorption coefficients in the case of collisionless skin
effect have been calculated with the three models. We have shown that the M1 model is not
able to model the absorption phenomenon. Two limit cases have been considered. In the case
ω/k << vth, the two populations M1 and the M2 moments models both capture the absorption
phenomena results but they are inaccurate. In the second case, ω/k >> vth, the two populations
M1 model does not describe correctly the absorption effect while the M2 model is sufficiently
accurate. Higher moments models such as the M3 moments or full kinetic models can be used to
correctly describe the absorption phenomenon in both limits. This work demonstrates through
the Landau damping and the laser-plasma absorption that angular moments models have to be
used carefully. These models do not always behave as a full kinetic model and can suffer from a
severe lack of accuracy depending on the phenomenon studied. This study can be extended to
other plasma effects and also to take into account collisional processes.
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