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Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy

fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron

transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we

present and test the results of a nonlocal model based on the first angular moments of a simplified

Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the

Boltzman H-theorem). It provides a better description of the electron distribution function, thus en-

abling studies of small scale kinetic effects within the hydrodynamic framework. Examples of

instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and

compared with the classical formula. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926824]

I. INTRODUCTION

High-energy-density plasmas are created in the interac-

tion of intense laser beams with solid targets. In particular,

in Inertial Confinement Fusion (ICF), nanosecond laser

pulses are used to implode and ignite a deuterium-tritium

target. Laser pulses cannot penetrate deeply into the matter

and the laser energy is deposited in a low density plasma,

below the electron critical density nc ¼ 1:1� 1021k�2
L cm�3,

where kL is the laser wavelength in lm. The deposited

energy is transported to the denser part of target by the elec-

tron conduction. The ablation rate, the pressure, and the im-

plosion velocity depend on this energy transfer.1 Although

the electron heat transport plays a key role, it is not cor-

rectly modeled in large ICF numerical tools. Indeed, the

electron conduction model implemented in the majority of

codes is based on the Spitzer and H€arm2 (SH) theory. But,

if the electron mean free path (MFP) exceeds about 2�
10�3 times the temperature gradient length, the SH theory

is no more valid and a nonlocal model is needed.3 This is a

common case in the ICF context.

Various macroscopic nonlocal models have been pro-

posed,4–6 improved,7,8 and compared.9,10 However, most of

them are not adapted for being used in hydrodynamic codes,

especially in a multidimensional geometry. The only excep-

tion is the one proposed by Schurtz, Nicola€ı, and Busquet11–13

(SNB), based on the multi-group transport scheme. In the

SNB model, nonlocal effects are computed by finding at each

temporal step the energy distribution of fast electrons, from a

stationary and simplified Fokker-Planck (FP) equation,

assuming a weak anisotropy and a small deviation from equi-

librium of the suprathermal part of the electron distribution

function (EDF). In this model, the electric and magnetic field

effects on suprathermal electrons are taken into account

through phenomenological corrections.14 These corrections

can be very complex and numerically unstable, especially in

the case where the magnetic fields are present.

In ICF targets, strong magnetic fields are generated all

over the conduction zone, but can also be excited inside the

imploding target, induced by nonlocal effects.15 Although

these fields may strongly modify the heat transport, a simple

and self-consistent electromagnetic nonlocal transport theory,

which can be coupled with hydrodynamic codes, is still

missing.

We develop here a nonlocal kinetic model based on angu-

lar interpolation of the FP equation, closed by the angular en-

tropy maximization.16 This model, called M1 (Ref. 17) for the

first angular moment, has already been tested for the relativis-

tic electron beam transport through matter,18 in domains of

fast ignition and medical applications. However, such a model

cannot be applied for studies for nonlocal transport as the fast

electrons are considered as separate species, and not as a part

of the overall electron distribution function. In this paper, we

develop a modified M1 model, allowing nonlocal transport

calculations and taking advantage of the entropic closure. We

show that the entropic closure allows an extension of the do-

main of application to stronger anisotropic cases, while the

advective form of equations leads to an easier accounting for

electromagnetic fields.

In this paper, we develop the M1 model in the domain

of nonlocal transport, presenting several examples in 1D and

2D geometry and analyzing the small scale kinetic effects in

the transport affected zone. In particular, we introduce a sim-

plified version of the FP equation in Section II, and our

model as well as the SNB model in Section III. In Section IV

we compare these models in ICF conditions, and in Section

V we discuss modifications of damping of electrostatic

plasma waves and excitation of stream instabilities in the

transport zone. Conclusions are drawn in Section VI.

II. TRANSPORT AND COLLISIONS

The heat flux is defined as the energy transported from a

hot region to a cold one over unit time and unit surface
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~q ¼ hne�~vi ¼
ð

R3

d3v�~vfe; (1)

where � is the electron kinetic energy and fe ¼ feð~x;~v; tÞ is

the phase space EDF, which depends on the space ~x, the ve-

locity~v, and the time t. The integration is performed over the

3-dimensional real space R. In what follows, me, e, and c
refer, respectively, to the electron mass, the elementary

charge, and the speed of light, Te and ne refer to the electron

temperature and density, and ~E and ~B refer to the electric

and magnetic fields.

In case of binary and small angle collisions (classical

plasmas), the EDF evolution is given by the FP equation

@

@t
þ~v � ~r þ

~F

me
� ~rv

 !
fe ¼

@fe

@t

� �
coll

; (2)

which takes into account both collective and collisional

effects. The symbol ~rv means gradient respect to the velocity

vector. The collective effects are described by the Lorentz

force ~F ¼ �eð~E þ~v
c � ~BÞ, and the right hand side is the

Landau collision term.19 Assuming that the plasma is com-

posed by electrons (subscript e) and one ion species (subscript

i), the full Landau collision term reads

@fe

@t

� �
coll

¼
X
j¼e;i

@

@~pe

ð
R3

d3vj
��U

@fe

@~pe

fj �
@fj

@~pj

fe

 !
; (3)

with

��U ¼ U0

2

u2��I �~u �~u
u2

;

~u ¼~ve �~vj as the relative velocity and

U0 ¼
4pe2q2

j Kej

u

as the scattering potential. The symbols mj, qj, and pj refer,

respectively, to the mass, the charge, and the momentum of a

particle j, while Kej refers to the Coulomb logarithm for elec-

trons colliding with j-particles.

The Landau collision operator is complicated and too

much time-consuming to be solved with a hydrodynamic

code. The simplifications are as follows: the ions are sup-

posed to have infinite mass and their velocity is neglected.

Target electrons are supposed at the equilibrium and their

deviation from equilibrium is induced by suprathermal elec-

trons. Then, the collision term in Eq. (3) reads20,21

@fe
@t

� �
coll

¼ See
@

@p

v2
th

v

@

@v
þ 1

� �
fe � f mð Þ þ �ee þ �ei

2

@2

@~X
2

fe;

(4)

where Sab ¼ �abpama=mb is the classical stopping power,

�ab ¼
4pnbq2

aq2
bKab

m2
av

3
a

is the collision frequency, vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is

the thermal velocity, f m ¼ ne=ð2pvthÞ3=2e�v2=ð2v2
thÞ is the

Maxwellian EDF, and

@2

@~X
2
¼ 1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

is the Laplace-Beltrami operator. Here, h and / are the ve-

locity angles, in spherical coordinates. The term containing

the Maxwellian EDF is important for the theory of nonlocal

transport as it allows to join the fast electron distribution

with the local population of thermal electrons.

As the heat is transported by suprathermal electrons, the

first term in the right hand side of Eq. (4) can be simplified

by retaining only the friction term and neglecting the diffu-

sion one. This simplification is only valid for the fast elec-

trons, it conserves the number of particles and describes the

relaxation to the equilibrium Maxwellian distribution. The

suprathermal assumption (v2
th=v

2 � 1) leads to

@fe

@t

� �
coll

¼ �eev
@

@v
fe � f m

e

� �
þ �ee þ �ei

2

@2

@~X
2

fe: (5)

The electron-electron collision term corresponds to the colli-

sion operator derived by Albritton, Williams, Bernstein and

Swartz22 (AWBS).

III. REDUCED MODELS

Equation (2), with the collision operator in Eq. (5), is

still computationally demanding and cannot be solved for

each time step of a hydrodynamic code. A possible way to

reduce the number of unknowns is to integrate over angles.23

The angular moments of the EDF are defined as

��f lð~x; v; tÞ ¼
ð

S2

d2Xfeð~x;~v; tÞ �~X|{z}
l�times

;

where ~X is the velocity direction vector, the double bar

stands for tensor of generic order (higher than one) and � is

the tensorial product. The integration is performed over the

unitary sphere S2 (0 � h � p; 0 � / � 2p). Hence, the first

three moments (l¼ 0, 1, and 2) read

f0 ¼
Ð

S2
d2Xfe

~f 1 ¼
Ð

S2
d2Xfe

~X

��f 2 ¼
Ð

S2
d2Xfe~X � ~X:

8>>><
>>>: (6)

In the same way, the first two moments of Eq. (2) read

@f0

@t
þ v~r �~f 1 �

e~E

mev2
� @
@v

v2~f 1

� �
¼ @f0

@t

� �
coll

@~f 1

@t
þ v~r � ��f 2 �

e

mev2

@

@v
v2 ��f 2 � ~E
� �

þ e

mev
f0

��I � ��f 2

� �
� ~E þ e

mec
~f 1 � ~B ¼ @~f 1

@t

� �
coll
;

8>>><
>>>: (7)
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where ��I is the second order identity tensor and the moment

integrated collision operators read

@f0

@t

� �
coll

¼ �eev
@

@v
f0 � f m

0

� �
@~f 1

@t

� �
coll
¼ �eev

@

@v
~f 1 � �ee þ �eið Þ~f 1:

8>>>><
>>>>:

Magnetic fields are naturally taken into account as

shown in Eq. (7). However, in what follows we will consider

only unmagnetized plasmas, ~B ¼ 0.

As the electron collision time is much smaller than the

hydrodynamic time scale, we can assume a quasi-stationary

EDF, allowing to neglect the temporal derivatives. This level

of approximation is compatible with hydrodynamic compu-

tations. However, the system (7) needs to be closed and the

second moment needs to be given explicitly. The choice of

this closure relation characterizes the model. We consider

two closure relations, called, respectively, P1 and M1.

A. Polynomial closure

The system (7) can be closed by the assumption of small

velocity anisotropies. Under this hypothesis, the EDF can be

described by the first order development of the Cartesian ten-

sor scalar product expansion (P1 approximation)

fe ~x;~v; tð Þ ¼ f0

4p
þ 3~X �~f 1

4p
: (8)

With the moment definitions (6), Eq. (8) leads to the closure

relation

��f 2 ¼
f0
3

��I : (9)

The relation (8) is simple and linear but it is valid only

for weak anisotropies (jj~f 1jj � f0), which is not always ful-

filled in the ICF conditions. In case of strong anisotropies,

the P1 model can produce negative values for some electron

energy groups, although the energy integration for the flux

calculation may hide this unphysical behavior.

B. Entropic closure

The M1 model was developed in order to provide access

to strongly anisotropic distributions.17,18,24

According to the second law of thermodynamics, all

closed systems tend toward the thermal equilibrium. This

behavior is expressed by the entropy maximization principle.

The latter is exploited in the M1 model, over the angular

directions. For each energy group, the local angular entropy

reads

Hv½fe� ¼ �
ð

S2

d2Xðfe log fe � feÞ: (10)

It is maximized with the constraint of the first two moment

definitions (6). The Lagrangian of this maximization prob-

lem is

L½fe� ¼Hv½fe�� a0 f0�
ð

S2

d2Xfe

� �
�~a1 � ~f 1�

ð
S2

d2X~Xfe

� �
;

where a0 and ~a1 are two Lagrangian multipliers, which can

be written as functions of f0 and ~f 1. The underlying M1 EDF

maximizes the Lagrangian functional

d

dfe
L fe½ � ¼ 0) fe ¼ Nea0þ~a1�~X ; (11)

where N is a normalization constant. The advantage of using

this closure relation is that the underlying EDF is an expo-

nential function. Thus, it is necessarily positively defined.

According to the definition (6) and using the underlying

M1 EDF (11), we obtain the expressions for the angular

moments

f0 ¼ 4pN
sinhj~a1j
j~a1j

ea0

~Xv ¼
~f 1

f0
¼ cothj~a1j �

1

j~a1j

� �
~a1

j~a1j
;

8>>>><
>>>>:

(12)

where ~Xv is the anisotropy vector, such that 0 � jj~Xvjj � 1.

The inversion of the second equation in (12) provides the

expression of the coefficient ~a1 and hence the total EDF in

function of the first two angular moments. Although, this

inversion cannot be performed analytically, it was performed

numerically and tabulated in Ref. 17 This expression can be

interpolated analytically with a precision better than 5% as

~a1 	
3~Xv

1� ~X
2

v
2

1þ ~X2

v

� � : (13)

Then, the total EDF takes the following form:

fe ¼ f0

j~a1j
4p sinhj~a1j

e~a1�~X : (14)

Using the moment definitions, we can find the closure

relation

��f 2 ¼ ��vðf0; ~f 1Þf0; (15)

with

��v f0; ~f 1

� �
¼ 1

3
��I þ l

~f 1 �~f 1

~f
2

1

� 1

3
��I

 !
:

In Section IV, we present examples of recovering the

total EDF from the first two angular moments according to

Eqs. (13) and (14).

The advantage of the M1 models is in their capacity to

describe strongly anisotropic systems. However, their imple-

mentation depends also on the considered physical proc-

esses. Specifically, in this paper, the form of collisional

operators is chosen to describe the heat transfer and the ther-

malization of hot electrons. This is different from previous

schemes18 dedicated to the transport of relativistic electrons
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which do not conserve the number of electrons and do not

account for their thermalization. In the nonlocal flux context,

these issues are of primary importance.

C. Diffusive nonlocal transport models

In the SH classical theory,2 the EDF in Eq. (8) is

assumed to be close to the equilibrium (f0 	 f m
0 ). This corre-

sponds to the hydrodynamic regime where the plasma is col-

lisional and the MFP is small compared to the electron

temperature gradient length. Thus, the first equation of the

system (7) is not used anymore and only the second equation

has to be solved.

The analytical solution for the electron transport coeffi-

cient can be found in the Lorentz gas approximation

(Z 
 1), for stationary and unmagnetized plasmas, and using

the P1 closure relation.2 Then, the second equation in (7)

reads

v

3
~rf0 �

e~E

3me

@

@v
f0 ¼ ��ei

~f 1:

The electric field in this equation can be found from the

requirement that the electric current

~je ¼ �e

ð1
0

dvv3~f 1

is equal to zero. Then, one obtains the following expression

for the electric field:

~E ¼ �me

6e

Ð1
0
~rf0v7dvÐ1

0
f0v5dv

; (16)

which, along with the equilibrium assumption for f0, reads

~ESH ¼ �
Te

e

~rne

ne
þ n

~rTe

Te

 !
: (17)

Here, the coefficient n ¼ 2:5 is in the limit Z 
 1. There is

no explicit analytical expression for the electric field if one

is taking into account electron-electron collisions in Eq.

(7). However, the expression (17) for the electric field is

still a good approximation if the coefficient n is interpolated

by the following expression: nðZÞ ¼ 1þ 3=2ðZ þ 0:477Þ
=ðZ þ 2:15Þ. Knowing the electric field, one can also find

an approximate expression for the first EDF moment

~f
m

1 ¼ �
k�ei

3

mev2

2Te
� 4

� �
f m
0

~rTe

Te
; (18)

where k�ei accounts for the ion charge Z dependence of the

effective MFP

k�ei ¼
Z þ 0:24

Z þ 4:2
kei:

According to Eq. (1), the expression for the local SH heat

flux reads

~qSH ¼ �kðTeÞ~rTe;

with

k Teð Þ ¼ 0:4
Z

Z þ 0:2 log Zð Þ þ 3:44

20 2=pð Þ3=2T5=2
e

m
1=2
e e4ZKei

:

According to Eq. (18), the energy is mostly transported

by suprathermal electrons having the velocity 3.7 times the

thermal velocity.11 Since the MFP varies as v4, these elec-

trons have a MFP 187 times higher than the thermal MFP.

They can penetrate deeply in plasma and deposit their energy

far from the point where they are originated. If the MFP of

these electrons becomes comparable to the temperature gra-

dient length (ke > 2� 10�3LT), the local theory is no more

valid and nonlocal corrections are needed.

The most successful nonlocal model proposed so far is

the multidimensional SNB model.11 We remind in what fol-

lows its main assumptions. The SNB model accounts for

deviations of the isotropic part of EDF from the Maxwellian

distribution. It is based on Eq. (7), in the diffusive approxi-

mation and with a simplified Z-fitted Bhatnagar, Gross, and

Krook (BGK) collisional operator25

@f0

@t

� �
coll

¼ ��ee f0 � f m
0ð Þ

@~f 1

@t

� �
coll
¼ ���ei

~f 1;

8>>>><
>>>>:

which is solved in a multi-group approximation neglecting the

particle exchange between the energy groups. The main

assumption of this model is splitting of the EDF in a local part,

which leads to the SH flux, and a nonlocal one induced by

suprathermal electrons, which leads to nonlocal effects. The

isotropic part of EDF in the SNB approximation reads f0

¼ f m
0 þ Df0 and the anisotropic part ~f 1 ¼ ~f

m

1 þ D~f 1. Solving

the first two moment equations, with the P1 closure, one finds

a diffusion equation for the suprathermal electrons. It reads

1

kee
� ~r kE

ei

3
~r

 !
Df0 ¼ �~r~gm

1

D~f 1 ¼ �
k�ei

3
~rDf0;

8>>><
>>>:

where the source term ~gm
1 ¼ �

k�ei

3
f m
0

~rTe

Te
is a simplified form

of Eq. (18), neglecting the return current, and kab ¼ v=2�ab

is the effective collisional stopping length (see formula (23)

in Ref. 11). The electric field in the SNB model is calculated

according to the SH formula (17). Its effect on the electron

transport is empirically taken into account for each energy

group through a reduction of the electron-ion MFP to a phys-

ical stopping length 1
kE

ei

¼ 1
kei
þ je~ESH j

� . The nonlocal correction

of the heat flux is given by D~f 1

~qNL ¼ 2pme

ð1
0

ð~f m

1 þ D~f 1Þv5dv ¼ ~qSH þ D~q:

Although this model is computationally efficient and oper-

ates in three spatial directions, it cannot describe strong
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deviations from the Maxwellian distribution and cannot eas-

ily account for the magnetic fields. This model is called

BGK-SNB, along the paper.

In this paper, we improve the SNB model by replacing

the BGK collisional term with the AWBS one.5 This opera-

tor allows diffusion within energy groups and it is closer to

the one used in P1 and M1 models. The improved model is

deduced in the same way as BGK-SNB model, but with the

new collision operator

@f0

@t

� �
coll

¼ �eev
@

@v
f0 � f m

0

� �
@~f 1

@t

� �
coll
¼ ���ei

~f 1:

8>>>><
>>>>:

Then, the diffusion equation for the correction to the iso-

tropic part of EDF reads

v

kee

@

@v
þ ~r kE

ei

3
~r

 !
Df0 ¼ ~r~gm

1 :

In this equation, we use the standard kinetic definition of the

MFP kab ¼ v=�ab. This modified model is called AWBS-

SNB along the paper.

IV. ELECTRON TRANSPORT

In this section, we compare the modified nonlocal mod-

els (M1, P1, and AWBS-SNB) with the BGK-SNB model, in

several representative cases of heat transport.

In particular, the M1 and P1 computations are per-

formed as follows.

• The initialization is given by hydrodynamic quantities

(temperature and density), which can be computed at each

temporal step of a hydrodynamic simulation. These quan-

tities define the Maxwellian EDF fm, which is used by col-

lision operators. As a first guess, the electric field is

assumed to depend on the hydrodynamic quantities,

according to Eq. (17).
• The system (7) is closed with Eq. (9) or (15), respectively,

in the P1 and M1 model. In this way, it is reduced to two

equations for two unknowns (f0 and ~f 1). We solve it in the

stationary limit, neglecting temporal derivatives. It is done

for each velocity group v, from the highest to the lowest

value and imposing f0ð~x; v ¼ vmaxÞ ¼ ~f 1ð~x; v ¼ vmaxÞ
¼ 0; 8~x and for a sufficiently high maximum velocity vmax.

• The deduced f0 and ~f 1 are used in Eq. (16), for the calcula-

tion of the nonlocal electric field. Since the validity of this

formula is limited to Lorentz gases, we multiplied it by

the factor n=2:5, as in Eq. (17). This fit is valid in the limit
~rTe=Te 
 ~rne=ne, which is always respected in this pa-

per. In the extreme case of Z¼ 1 and ~rTe=Te � ~rne=ne,

the error committed is �30%, smaller than in the codes

which assume local electric fields. An equivalent choice

could be to use Eq. (17), with hydrodynamic quantities,

derived from the computed f0. The new electric field is

injected in the system (7), for a new iteration. This process

is repeated till the zero current condition. Usually, it is

achieved with the precision of a few percent after 2–3 iter-

ations. This can be explained by the fact that the return

current is carried out by slower electrons, which are more

collisional and less sensitive to the nonlocal effects.
• Once the zero current condition is achieved, we compute

hydrodynamic quantities from f0 and ~f 1. From f0, we

deduce the new temperature and density, which are close

to the quantities given as initialization. This justifies the

stationary assumption. According to Eq. (1), the heat flux

is deduced from ~f 1. The total EDF can be obtained from f0
and ~f 1. In the P1 model, it is given by Eq. (8), in the M1

model by Eqs. (13) and (14).

A temporal evolution of hydrodynamic quantities is cal-

culated with a hydrodynamic code. The M1 as well as the P1

model should be computed in their (kinetic) stationary limit,

at each hydrodynamic temporal step. The heat flux derived

from these models is used in the subsequent hydrodynamic

step. However, this paper is limited to a stationary analysis.

A. Transport along the temperature gradient

This case has already been considered for testing nonlo-

cal models.11 Let us consider a fully ionized Beryllium

plasma at a constant density of 4:472� 1022 cm�3, having a

steep temperature gradient given by

Te xð Þ ¼ jT0 � T1j
2

2

p
arctan

x

dNL

� �
þ 1

" #
þ T1; (19)

with T0 ¼ 5 keV; T1 ¼ 1 keV, and dNL ¼ 5 lm.

It is helpful for the comprehension of the P1 and M1

models to detail the progression of the computation. The

temperature in Eq. (19), with the constant density, initializes

the models. The first-iteration electric field is given by Eq.

(17). The system (7) is solved, as described above. The solu-

tion is iterated till to reach the zero current condition. From

computed f0 and ~f 1, we deduce heat fluxes and total EDFs.

Heat fluxes computed with the previously described

models are compared in Fig. 1(a). The fluxes are normalized

to the maximum value of the local flux q0 and the space is

measured with the standard thermal MFP k0 ¼ 3
ffiffi
p
2

p T2
0

4pneZe4Kei

	 3:15 lm. The nonlocal models show two main effects: a

flux limitation (FL) and a preheat in the front of the tempera-

ture gradient. The former effect could be described by

roughly limiting the SH flux to a fraction of the free stream-

ing (FS) flux qFS ¼ menev3
th. However, this flux limitation

(FL) model is not describing the preheat; moreover, the max-

imum of the heat flux is shifted to the high temperature zone.

All considered nonlocal models agree in the description

of the heat flux. After velocity integration, no differences

can be seen between P1 and M1 models, so we show only

the latter. The flux limitation is different for each model and

in the hot region we see that SNB models delocalize slightly

more than M1.

Local and nonlocal electric fields are shown in Fig. 1(b).

While smaller, there still is a difference between local and

nonlocal electric fields. The curves M1 and P1 correspond to

the same set of equations for f0 and ~f 1 but with the different
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closure relations, Eqs. (15) and (8), respectively. For the

electric field, the differences between both closures are

negligible.

We proceed to a kinetic description of the system. By

using the expressions (13) and (14), we calculate the total

EDF in the cold and hot regions of plasma, specified by

black dashed vertical lines in Fig. 1.

Figure 2 shows the logarithm of the normalized total

EDF for M1 and P1 in the cold and in the hot plasma region.

We also show the first moment as a function of velocity in

both regions and for both models.

Suprathermal electrons, created in the hot region, travel

along their MFP until the cold region, where they deposit

their energy. In the hot region, the EDFs are almost isotropic

because only a small fraction of electrons is moved away.

Since these electrons are very energetic compared to the cold

region temperature, they strongly affect the cold EDF, induc-

ing a stronger anisotropy.

Figure 2(a) displays the limit of the P1 model: because

of its linear form, a stream of suprathermal electrons, moving

from the right to the left (h ¼ 180
), forces the EDF to

become negative for electrons moving in the opposite direc-

tion (h ¼ 0
). This can be better seen in Fig. 3, where we

present the anisotropic part of EDF normalized to f0:

ðfe � f0Þ=f0 ¼ Dfe=f0. The P1 model adds an unphysical ani-

sotropy in the opposite direction (70
 < h < 250
).
The differences between the M1 and the P1 models

increase if the anisotropy increases (dNL ¼ 0:5 lm in Eq.

(19)), as shown in Fig. 4(a). In this case, SNB models are not

able to describe the heat flux because of their local hypothe-

sis on the electric fields, which causes the unphysical modu-

lation of the flux. Differences between P1 and M1 models

are stronger in the phase space, as shown in Fig. 4(b).

In summary, the M1 model succeeds in reproducing the

nonlocal features: the natural limitation, the preheat in front

of the temperature gradient, and it shows a good agreement

with the SNB model. Besides that the M1 closure relation,

compared to the P1 one, does not modify the flux calculation

but at a kinetic level changes some parts of the EDF.

B. Temperature modulation

In this subsection, we compare both modified models in

a wide range of nonlocal regimes.

For comparison of the nonlocal transport models, we

consider the Epperlein-Short (ES) test.26 It consists in the

study of the flux limitation effect in the electron heat trans-

port, for a plasma with a static temperature modulation

TeðxÞ ¼ T0 þ T1 sinðkxÞ;

where k is the wavenumber, T0 ¼ 1 keV, and T1 ¼ 0:1 keV.

The plasma is a fully ionized Beryllium gas of a constant

density 4:472� 1022 cm�3. Figure 5 shows the heat flux in

such a plasma in the case kk0 	 8� 10�2. In this test, P1

and M1 give the same results, also for EDFs.

Figure 6 shows the complete results of the ES test. The

analytical fit obtained from FP simulations is plotted as a

function of the nonlocal parameter kk0, in different regimes:

qFP=q0 ¼ 1=ð1þ 50kk0Þ.
The M1 model, as well as the SNB models, agree pretty

well with the FP results, except for kk0 	 1. This is because

M1, as P1, is a model closed at the first moment. Hence, it is

able to describe only one direction of anisotropy, while in

the ES test there are two opposite directions of anisotropy.

When the two opposite beams of fast electrons overlap

(kk0 	 1), the M1 model is no longer a good approximation.

However, when this happens, the heat flux is reduced by a

factor greater than 50.

C. Flux rotation and counterstreaming

The M1 model provides also a good estimate for nonlo-

cal fluxes in the two-dimensional geometry. Figure 7 shows

with a color bar the temperature profile of a fully ionized

Beryllium plasma at a constant density of 4:472� 1022cm�3.

The analytical form of the temperature is

Te x; yð Þ ¼ Te xð Þ xmax

2x

� �1=p yð Þ
;

FIG. 1. Analysis of the heat transport on the temperature gradient. (a) Comparison between the different heat flux models. In black, the temperature, in celes-

tial, the SH flux, in yellow, the 20% FL, in green and violet, the SNB models using, respectively, the BGK and the AWBS collision operators, and in blue, the

M1 model. The two vertical dashed lines indicate the regions where the kinetic analysis is done. (b) Local electric field spatial distribution compared with the

nonlocal one. The first is computed using the SH theory and is used in the SH model and in the diffusive ones (BGK-SNB, AWBS-SNB). The latter is com-

puted using the P1 and the M1 models.
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where TeðxÞ is given by Eq. (19), pðyÞ ¼ 3 exp½y2=ðLxmaxÞ�;
L ¼ 200 lm, and xmax ¼ 50 lm is the length of the target

along the x axis.

We present here the results obtained with the M1 model.

The P1 and SNB models provide very similar results.

In Fig. 7, arrows indicate the local and the M1 heat

fluxes. In the nonlocal case, the sharpness of the horizontal

gradient influences the vertical flux, inducing a rotation of the

latter with respect to the temperature gradient. Cuts along the

horizontal and vertical axes are drawn in order to demonstrate

FIG. 2. Analysis of the EDF and its moments in the velocity space. Velocities are shown in the radial direction in polar plots. They are normalized on the thermal veloc-

ity while EDF in the hot region vth. The out-of-bord values are uniformly painted with the bord colors. (a) P1, total EDF in the cold (left) region of the plasma. (b) M1,

total EDF in the cold region of the plasma. (c) P1, total EDF in the hot (right) region of the plasma. (d) M1, total EDF in the hot region of the plasma. (e) Comparison

of the models for the integrand function in the cold region of the plasma. (f) Comparison of the models for the integrand function in the hot region of the plasma.

082706-7 Del Sorbo et al. Phys. Plasmas 22, 082706 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.210.28.3 On: Thu, 03 Sep 2015 08:28:37



the differences. In Fig. 8(a), the horizontal cut shows the main

flux, induced by the sharpest gradient. We also see a counter-

streaming flux, which has the opposite sign with respect to the

local one. This effect can also be seen in monodimensional

simulations. Figure 8(b) presents two M1 fluxes. The continu-

ous blue line is the vertical cut of Fig. 7, while the dashed

blue one is the result of a monodimensional simulation with

the same vertical temperature gradient. This allows to see

how the horizontal gradient affects the vertical one.

The M1 model is also able to reproduce the main multi-

dimensional nonlocal feature: the flux rotation to a competi-

tion between the counterstreaming flux and to the crossed

interaction.

V. NONLOCAL LANDAU DAMPING

In Section IV, we have shown that the M1 model is able

to describe complete EDFs, contrarily to the P1 model, which

FIG. 3. Anisotropic part of the EDF (defined as Dfe=f0 ¼ fe=f0 � 1) in the cold region of plasma (shown in Fig. 1(a)), as a function of the velocity, normalized

by the thermal velocity in the hot region. (a) P1 description. (b) M1 description.

FIG. 4. Comparison of transport models for the heat flux analysis in the case of a sharp temperature gradient. (a) Heat fluxes for different models. The vertical

dashed line represents the place where the EDF is shown in panel 4(b) (�16k0). (b) Integrand function of the heat flux, as a function of velocity for the two ad-

vective models.

FIG. 5. Study of the heat flux for a modulated temperature, using the local

model, the SNB ones and M1. P1 results are not shown because very similar

to M1, black line shows the temperature modulation. Periodic boundary con-

ditions are applied.
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may lead to negative (unphysical) values. Besides heat trans-

port, this property allows the kinetic description of a wide

range of collective phenomena. Here, we focus on the study of

the Landau damping27 of longitudinal plasma waves: the

Langmuir and the ion-acoustic waves,28,29 in the nonlocal case

of a steep temperature gradient considered in Section IV A.

A. Langmuir waves

The Langmuir waves are high-frequency electron oscil-

lations corresponding to the electric field perturbations on a

microscopic scale. A modification of the EDF in the heat

transport zone may strongly affect the stability of Langmuir

waves, especially downstream the temperature jump. Since

this phenomenon is not related to collisions, in a first step we

neglect them, for the sake of simplicity.

A dispersion equation for the longitudinal waves cor-

responds to zeros of the longitudinal dielectric permittiv-

ity �lðx; kÞ ¼ 0. Because of their inertia, ions do not play

a role in Langmuir waves and the dielectric permittivity

reads19,27

�l x; kð Þ ¼ 1þ d�l
e ¼ 1þ 4pe2

k2me

ð
R3

d3v

x� ~k �~v
~k � @
@~v

fe ~vð Þ:

(20)

The temporal evolution of the wave amplitude depends

on the imaginary part of the dielectric permittivity.

Depending on its sign, it leads to a wave damping or an

instability. In the linear damping theory, the imaginary term

is assumed to be small, compared to the real one. Defining

the damping rate as c ¼ �=ðxÞ, we have x ¼ <ðxÞ � ic
where the damping rate reads

c ¼ = �lð Þ
@
@x< �lð Þ : (21)

According to the general approach,19,27 the dielectric permit-

tivity is calculated by separating the denominator in Eq. (20)

in the principal value and the pole

1

x� ~k �~v
¼ P

x� ~k �~v
� ipd x� ~k �~vð Þ;

where P stands for principal value.

FIG. 7. Two dimensional analysis of the heat transport. The color back-

ground traces the temperature. Arrows describe the magnitude and direction

of heat fluxes. The SH model, in black, is compared with M1, in white.

Dashed black lines denote the cuts shown in Fig. 8.

FIG. 8. Cuts of the fluxes of Fig. 7. (a) Horizontal cut. The dashed horizontal line indicates the zero flux. (b) Vertical cut. The dashed blue line describes a

monodimensional simulation using the same vertical gradient.

FIG. 6. Heat flux limitation in the ES test. Solid line presents the FP fit, for a

sinusoidal modulation of temperature. The results are given in function of

the wavenumber normalized with the MFP.
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In the Cartesian coordinate system, the damping rate

goes like

c / � vk
@Fk vkð Þ
@vk

" #
vk¼x=k

; (22)

where FkðvkÞ ¼
Ð

d2v?fe and the symbols k and ? mean,

respectively, the parallel and the perpendicular directions with

respect to the wavevector ~k. Figure 9 shows the typical case

where Langmuir wave instabilities develop. A positive gradi-

ent is induced by a population of hot electrons, which are

transported to the cold region of plasma from the hot one. As

our models are based on a spherical coordinate description of

EDF, expressions for the damping rate are more complicated.

The integrals in Eq. (20) are calculated in the spherical coor-

dinate system with the vector ~k parallel to the temperature

gradient: ~k �~v ¼ kvl. The M1 EDF is given by Eq. (14).

Developing the denominator to the third order for the parame-

ter kvl=x� 1, the real part of dielectric permittivity is

< d�l
e

� �
¼ � xpe

x

� �2 1

ne

ð
R

dvv2f0 þ 2
k

x

ð
R

dvv3f0I1 þ 3
k

x

� �2ð
R

dvv4f0I2

( )
; (23)

where xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne=me

p
is the electron plasma frequency

and

I1 ¼ cothða1Þ � a�1
1

I2 ¼ 1� 2a�1
1 cothða1Þ � 2a�2

1 :

(

The imaginary part reads

= d�l
e

� �
¼

x2
pep

2nek2

x
k

f0
x
k

� �
a1

x
k

� �
sinh a1

x
k

� �	 
 ea1
x
kð Þ

(

�
ð1

x
k

dv
f0a2

1

sinh a1ð Þ
e

a1x
kv

)
;

so the damping rate is

c
x
¼ x

k

� �2 p
4

x
k

f0
x
kð Þa1

x
kð Þ

sinh a1
x
kð Þ½ �e

a1
x
kð Þ �

Ð1
x
k

dv
f0a2

1

sinh a1ð Þe
a1x
kvÐ

R
dvv2f0þ 3 k

x

Ð
R

dvv3f0I1þ 6 k
x

� �2Ð
R

dvv4f0I2

:

(24)

The P1 damping rate is obtained from Eq. (24), in the linear

limit for a1 	 3f1=f0 � 1

c
x
¼ x

k

� �2 p
4

x
k f0

x
k

� �
þ 3 x

k f1
x
k

� �
� 3

Ð1
x
k

dvf1Ð
R

dvv2f0 þ 2 k
x

Ð
R

dvv3f1 þ 3 k
x

� �2Ð
R

dvv4f0

:

(25)

This relation can also be obtained by considering the EDF in

Eq. (8).

The real part of the Langmuir wave frequency is not

affected by the transport effects and it is given by the stand-

ard Bohm-Gross relation, <ðxÞ 	 6xpe½1þ ð3=2Þk2k2
De�.

Here, kDe ¼ vth=xpe is the local Debye length.

We consider the heat transport along the temperature

gradient for the cold EDFs shown in Fig. 2. The Langmuir

wave damping rate is shown in Fig. 10 as a function of the

wavenumber, for waves propagating forward and backward

with respect to the temperature gradient. The models shown

are the hydrodynamic one (HD), P1, and M1. The damping

rate for the HD model is given by Eq. (25), with f0 ¼ f m
0

and ~f 1 ¼ 0. Figure 10 shows that hot electrons disturb

Langmuir waves, inducing instability in the direction of hot

electron propagation (backward waves), for wavenumbers

kkDe 	 0:15� 0:25. The differences between the two non-

local models are both quantitative and qualitative: damping

rates are different but also may have different signs,

depending on the wavenumber. Moreover, the P1 model

produces a spurious instability in the forward direction

because it transforms an unphysical behavior (negative total

EDF) into an instability, as shown in Fig. 10(a).

Collisions can be accounted for in the damping of

Langmuir waves by adding an additional term in the imagi-

nary part of the electron dielectric permittivity, =ðd�l
eÞ

¼ x2
pe�ef f=x3, where

�ef f ¼
4
ffiffiffiffiffiffi
2p
p

3

Z2e4niKei

m2
ev

3
th

FIG. 9. EDFs integrated over perpendicular velocity, as functions of the par-

allel velocity, in typical cases of instability development for Langmuir

waves (LW) and for ion-acoustic waves (IAW).
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is the effective collision frequency.19 This term is the same

for all models and corresponds to the collision term ��ef f df
in the FP equation.

The results for the collisional Landau damping of

Langmuir waves, for the downstream temperature zone in

Fig. 2, are shown in Fig. 11. We see that the instability rate

is reduced and the unphysical unstability for the forward

propagating wave disappears. However, the difference

between the models is evident: while the instability disap-

pears for P1, it is still present for the M1 model. The

expected growth rate c � 5� 1013 s�1 corresponds to a time

much shorter than the typical hydrodynamic time. Therefore,

one may expect that the Langmuir turbulence can be devel-

oped downstream the temperature gradient, possibly affect-

ing the electron heat flux.

B. Ion-acoustic waves

The ion-acoustic waves are low-frequency waves

(x=k� vth) which involve electrons and ions. Similar to the

Langmuir waves, the spectrum of ion-acoustic waves is

defined by zeros of the dispersion equation �lðx; kÞ ¼ 0,

where �l ¼ 1þ d�l
e þ d�l

i includes the electron and the ion

contribution. In calculation of the ion dielectric permittivity,

we assume the ions to be cold, d�l
i 	 �x2

pi=x
2, where xpi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pZe2ni=mi

p
is the ion plasma frequency.

Calculating the electron dielectric permittivity, defined

by (20), in the low frequency limit x� kvth, we obtain the

following expression in the spherical coordinates:

< d�l
e

� �
¼

x2
pe

k2

1

ne

ð
R

dvf0�
ð

R

dvf0

a2
1N a1ð Þ

sinh a1ð Þ
�a1 coth a1ð Þþ1

" #( )
;

where

N xð Þ ¼
ðx

0

dy
sinh yð Þ

y
:

In the limit a1 � 1, the electron contribution reduces to

<ðd�l
eÞ ¼ 1=ðk2k2

DeÞ. Correspondingly, the expression for the

ion-acoustic wave frequency reads

x2 ¼
x2

pik
2k2

De

1þ k2k2
De

;

FIG. 10. Damping rate of Langmuir waves, normalized to the electron plasma frequency, as a function of the wavenumber normalized to the local Debye

length, for the hydrodynamic theory (HD), and for M1 and P1. (a) Forward wave propagation. (b) Backward wave propagation.

FIG. 11. Damping rate of Langmuir waves, accounting for the collision term. (a) Forward wave propagation. (b) Backward wave propagation.
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where xpikDe ¼ cs is the local sound speed.

The general expression (21) also applies to the ion-

acoustic wave damping. Following the procedure described

for Langmuir waves (see also Ref. 28), the damping rate of

the ion-acoustic waves reads

c
x
¼ p

4

x
k

f0
x
kð Þa1

x
kð Þ

sinh a1
x
kð Þ½ � e

a1
x
kð Þ �

Ð1
x
k

dv
f0a2

1

sinh a1ð Þ e
a1x
kvÐ

R
dvf0 �

Ð
R

dvf0
a2

1
N a1ð Þ

sinh a1ð Þ � a1 coth a1ð Þ þ 1
h i :

This expression simplifies in the linear limit in a1, which cor-

responds to the P1 model

c
x
¼ p

4

x
k f0

x
k

� �
þ 3 x

k f1
x
k

� �
� 3

Ð1
x
k

dvf1Ð
R

dvf0

:

An example of the ion-acoustic wave damping is shown

in Fig. 12 (forward and backward propagating waves), for

the position x¼ 0 in Fig. 1(b). The damping is strongly

modified near the maximum of the temperature gradient. The

ion-acoustic waves propagating in the forward direction

become unstable, while the waves propagating in the back-

ward direction are stronger damped.

This ion-acoustic instability is induced by the return cur-

rent, as it has been explained in Ref. 28. In Fig. 9, it is sche-

matically illustrated that the positive derivative of FðvkÞ is

induced by the shift of the maximum of the EDF due to the

electric field, which induces the return current.

The instability is obtained for both models; however, the

location of the instability can be different because the differ-

ence of location of the electric field maximum, as shown in

Fig. 1(b). The small differences between M1 and P1 models

are explained by the fact that the ion-acoustic waves have

very low phase velocities and the details of the EDF at high

velocities do not have large importance.

For the plasma parameters presented in Fig. 1, the ion

plasma frequency is of the order of 1014 s�1 and the ion-

acoustic instability can be excited in a few picosecond time

scale. It could introduce an effective (turbulent) resistivity

and suppress the heat transport.30

VI. CONCLUSIONS

In this paper, we have presented a new nonlocal model

of electron energy transport in high-energy-density plasmas,

based on the kinetic FP equation and on an entropic closure

relation. This model has been compared with two SNB mod-

els, using different collision operators and with the P1

model, in different conditions of heat transport. The M1

model reproduces all nonlocal features in one and two spatial

dimensions and gives a better description of the EDF. This

provides access to small scale collective phenomena such as

Landau damping of Langmuir and ion-acoustic waves. It is

shown that in front of the temperature gradient and around

the maximum of the temperature gradient, the Langmuir and

the ion-acoustic instabilities may be developed, thus reduc-

ing the MFP of the electrons and consequently affecting the

nonlocality of the flux.

The structure of the M1 model allows to naturally take

into account electromagnetic fields, which is also a crucial

issue for the high-energy-density physics applications.
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