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Abstract. This work deals with the numerical resolution of the M1-Maxwell system
in the quasi-neutral regime. In this regime the stiffness of the stability constraints of
classical schemes causes huge calculation times. That is why we introduce a new sta-
ble numerical scheme consistent with the transitional and limit models. Such schemes
are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able
to handle the quasi-neutrality limit regime without any restrictions on time and space
steps. This approach can be easily applied to angular moment models by using a mo-
ments extraction. Finally, two physically relevant numerical test cases are presented
for the Asymptotic-Preserving scheme in different regimes. The first one corresponds
to a regime where electromagnetic effects are predominant. The second one on the con-
trary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral
regime. In the latter case the illustrative simulations are compared with kinetic and
hydrodynamic numerical results.

Key words: Asymptotic-Preserving scheme, Fokker-Planck-Landau equation, Maxwell equa-
tions, quasi-neutral limit, angular M1 moments model.

1 Introduction

This work deals with non-homogeneous collisional plasmas described by a kinetic model.
The plasma is considered as a mixture of electrons and ions. Each species is characterised
by its distribution function which corresponds to particles density in the phase space.
In this work the M1 angular moments model describes electron transport and considers
binary collisions between particles whereas Maxwell equations are used to describe the
evolution of electromagnetic fields. For the sake of simplicity, we assume that the plasma
consists of electrons and one ion species considered as immobile. This approximation is
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relevant due to the important mass of ions compared to the electrons mass. This means
our model is valid on time scales during which the ions motion can be neglected.

For the study of collisional processes, the two important physical scales are the mean
free path and the electron-ion collision frequency. The mean free path represents the av-
erage distance travelled by an electron between two collisions with an ion. The electron-
ion collision frequency represents the number of electron-ion collision per unit of time.
When the electronic plasma period is very small compared to the electron-ion collisional
period and the Debye length is very small compared to the mean free path, the plasma
is designated as quasi-neutral and the Maxwell-Gauss (also called Maxwell-Poisson) and
Maxwell-Ampere equations degenerate into algebric equations on collisional time scales.

Therefore to handle this type of situation a new class of methods, called Asymptotic-
Preserving (AP) methods has been developed. These methods have been introduced
firstly by Shi Jin ( [25]) in the context of diffusive limits for kinetic equations. Consider a
system (Sα) depending on a parameter α and (S0) the corresponding limit system when α
tends to zero. In our case α is the ratio between the Debye length and the mean free path.
A numerical scheme with time step ∆t and space step ∆x is called Asymptotic-Preserving
in the limit α tends to zero for the system (Sα) if the scheme is stable independently of
the values taken by α and if the limit scheme obtained for α=0 is consistent with the limit
problem (S0). In this work the system (Sα) corresponds to the Fokker-Planck-Landau-
Maxwell system and (S0) corresponds to the Fokker-Planck-Landau-Maxwell system in
the quasi-neutral limit. This regime has been already studied in the context of fluid mod-
els ( [10, 12, 17]). For example in ( [12]), the authors considered a two fluid isentropic
Euler system coupled with the Poisson equation. It is shown that the Maxwell-Poisson
equation can be reformulated into an elliptic equation which does not degenerate at the
quasi-neutral limit. In ( [11]), this approach is generalised to the Euler-Maxwell model
with a strong magnetic field. A kinetic model consisting in a two fluid Vlasov-Poisson
system has also been investigated in ( [14]). In ( [16]), an Asymptotic-Preserving scheme is
proposed for the Euler-Maxwell system in the quasi-neutral regime. The Maxwell equa-
tions are reformulated to enable the computation of the electrostatic field even in the limit
regime. The development followed to express the electric field is well known in physics
( [9], [3]).

The present paper deals with the construction of an Asymptotic-Preserving scheme
or the M1-Maxwell system in the quasi-neutral limit. The strategy adopted is similar to
the one in ( [16]), nevertheless to our knowledge, it is the first time that such schemes are
considered for kinetic models with true collision operators. This fact is very important to
deal with collisional plasma because the collision frequency ν must follow the Coulom-
bian interaction law (ν≈ 1/|v|3). To perform realistic simulations in plasma physics,
Coulombian interactions must be used. Therefore, relaxation operators are not relevant
from a physical point of view. Moreover up to now, Asymptotic-Preserving schemes for
the quasi-neutral limit have been developed either for fluid description of plasma or for
collisionless plasmas. Asymptotic-Preserving schemes have been recently used for nu-
merous applications in the context of strong magnetic fields ( [5–7, 15]) for the gyro-fluid
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limit as well as in fluid mechanics for the hydrodynamic limit ( [25–27]). Other applica-
tions can be found for example in [13, 18, 23].

Kinetic descriptions are accurate but can be too numerically expensive to be used for
many real physical applications. An alternative way could be to consider a fluid descrip-
tion based on average quantities. Nevertheless, macroscopic descriptions are often not
accurate enough. For example, in the context of inertial confinement fusion, the distri-
bution functions considered can be far from equilibrium and in this case the fluid de-
scription is not adapted. Moreover kinetic effects like non local transport ( [4, 31]) or the
development of some instabilities ( [19]) can be important on long collisional time scales
and are not captured by fluid simulations. At the same time, kinetic codes are usually
limited to short time scales and cannot reach time scales studied by fluid simulations. It
is therefore an important challenge to describe kinetic effects using reduced kinetic codes
on fluid time scales. Angular moments models represent intermediate models between
the kinetic and fluid levels. They are less numerically expensive than kinetic models and
more accurate than fluid models. They are constructed by using an angular moments
extraction ( [28, 32]) from the kinetic equations. But, there exists several moment models
whose differences come from the choice of the closure. For example, the very popular PN
closure ( [24]) does not ensure the positivity of the distribution function. Hence we con-
sider in this paper a M1 moments model ( [20, 21, 29]) based on an entropy minimisation
principle. A M1-Asymptotic-Preserving scheme is therefore derived following the same
method as in the kinetic case.

The paper is organised as follows. Section 2 introduces the Fokker-Planck-Landau-
Maxwell system and its quasi-neutral limit. A reformulation of the Fokker-Planck-Landau-
Maxwell system is presented in the case of one dimension in space and one dimension in
velocity. The model is considered with electric fields and collision operators. Then, the
method is generalised for full multi-dimensions problems with electromagnetic fields
and collision operators. Section 3 introduces in detail the numerical construction of an
Asymptotic-Preserving scheme for the reformulated system of section 2. Section 4 deals
with the construction of an Asymptotic-Preserving scheme for the M1 moments model
from the kinetic one. Finally, section 5 presents two physically relevant numerical test
cases for the M1-Asymptotic-Preserving scheme for different regimes. The first one cor-
responds to a regime where electromagnetic effects are predominant whereas the second
one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the
collisional quasi-neutral regime. The numerical results are compared with kinetic and
hydrodynamic numerical results.
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2 The Fokker-Planck-Landau-Maxwell system and its quasi-neutral
limit

We firstly present the kinetic model then we introduce the quasi-neutral limit. It is im-
portant to notice, we work with true Coulombian collision operators.

2.1 The Fokker-Planck-Landau-Maxwell system.

Consider a kinetic model for a plasma constituted of electrons and one ion species con-
sidered fixed. Therefore the description is performed with a non-negative distribution
function for electrons fe(x,v,t), x∈Rn represents the space variable, v∈Rn is the velocity
variable, n=1,2 or 3 and t is the time. The mass and the charge of the electron are respec-
tively written me and qe. The coefficient c represents the speed of light in vacuum. The
Fokker-Planck-Landau-Maxwell system writes

∂ fe

∂t
+v.∇x fe+

q
me

(E+v×B).∇v fe =Cee( fe, fe)+Cei( fe), (2.1)

∂E
∂t
−c2∇x×B=− j

ε0
, (2.2)

∇x.E=
qe

ε0
(ne−ni), (2.3)

∂B
∂t

+∇x×E=0, (2.4)

∇x.B=0, (2.5)

where E and B represent respectively electric and magnetic fields. Cee and Cei are the
electron-electron and electron-ion collision operators. The expression of Cee and Cei are
given by

Cee( fe, fe)=νeedivv

(∫
v′∈Rn S(v−v′)[∇v fe(v) fe(v′)− fe(v)∇v fe(v′)]dv′

)
, (2.6)

Cei( fe)=νeidivv

[
S(v)∇v fe(v)

]
, (2.7)

where
S(u)=

1
|u|3 (|u|

2 Id−u⊗u) (2.8)

is the Landau tensor and Id is the unit tensor. The parameters νee and νei are positive
physical constants.

The electronic density ne and the electronic current j write
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ne(x,t)=
∫

Rn
fe(x,v,t)dv, j(x,t)=qe

∫
Rn

fe(x,v,t)vdv. (2.9)

Since the ions are supposed fixed, the ion density ni is considered as a known function
of space.

2.2 Properties of the collision operators.

The electron-electron collision operator satisfies mass, momentum and energy conserva-
tion properties ∫

Rn
Cee( fe, fe)

 1
v
v2

dv=0, (2.10)

while the electron-ion collision operator satisfies only mass and energy conservation∫
Rn

Cei( fe)

(
1
v2

)
dv=0. (2.11)

They both dissipate the entropy i.e.∫
Rn

Cei( fe) log fe dv≤0,
∫

Rn
Cee( fe, fe) log fe dv≤0, (2.12)

which implies that the Boltzmann entropy

H( fe)=
∫

Rn
( fe log fe − fe)dv (2.13)

is a Lyapunov function for equation (2.1).

Properties.

(i) The equilibrium states of the electron-ion collision operator Cei

(
i.e. Cei( fe) = 0

)
are given by the set of isotropic functions fe(v)= fe(|v|).

(ii) The equilibrium states of the electron-electron collision operator Cee

(
i.e. Cee( fe, fe)=

0
)

are given by the Maxwellian distribution functions

fe(v)=ne (
me

2πkBT
)3/2 exp

(
−me(v−u)2

2kBT

)
, (2.14)
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where kB is the Boltzmann constant, ne is the electronic density, T is the temperature
and u represents the mean velocity.

(iii) The equilibrium states for both collision operators
(

i.e. Cee( fe, fe)+Cei( fe)= 0
)

are given by the isotropic Maxwellian distribution function

fe(v)=ne (
me

2πkBT
)3/2 exp

(
−mev2

2kBT

)
. (2.15)

2.3 Scaling for the analysis of collisional processes.

For the analysis of collisional processes three important parameters are introduced: the
mean free path λei which represents the average distance travelled by an electron between
two collisions, the thermal velocity vth and the electron-ion collision frequency νei. They
satisfy the relations

vth =

√
kBT
me

, νe,i =
vth

λe,i
. (2.16)

These parameters enable us to scale time, space and speed

t̃=νe,it, x̃= x/λe,i, ṽ=v/vth. (2.17)

In the same way, we scale the electric field, the magnetic field and the distribution
function

Ẽ=
eE

mevthνe,i
, B̃=

eB
meνe,i

, f̃ = fe
v3

th
n0

. (2.18)

n0 is the initial electronic density.

With these dimensionless quantities the system (2.1) becomes the following system
where we have omitted the tildes
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∂ f
∂t

+v.∇x f−(E+v×B).∇v f =
1
Z

Ce,e( f , f )+Ce,i( f ) ,

∂E
∂t
− 1

β2∇x×B=− j
α2 ,

∂B
∂t

+∇x×E=0,

∇x.E=
1
α2 (1−n),

∇x.B=0,

(2.19)

where α=
νe,i
ωpe

, ωpe represents the electronic plasma frequency, β= vth/c, n= ne/n0

and Z the charge of the ions. In this work Z is taken equal to 1.

The dimensionless collision operators Cee( f , f ) and Cei( f ) write like in (2.6) for νee =
νei =1.

2.4 The electrostatic case.

In the electrostatic case with only one dimension for space (x∈R) and one for velocity
(v∈R), the system (2.19) can be written in the following form


∂ f
∂t

+v∂x f−E∂v f =Ce,e( f , f )+Ce,i( f ),

∂E
∂t

=− j
α2 ,

(2.20)

where Maxwell-Poisson has to be satisfied at initial time.

Remark 1. Notice that the fourth equation of system (2.19), called Maxwell-Gauss
equation (or Poisson equation) is not used. Indeed, the second equation of (2.19), called
Maxwell-Ampere equation and Poisson equation are equivalent if Poisson equation is
verified at initial time.

The limit system (S0) is obtained when the parameter α tends to 0 and corresponds
to the quasi-neutral limit. It can be written in the form
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∂ f
∂t

+v∂x f−E∂v f =Ce,e( f , f )+Ce,i( f ),

j=0,

(2.21)

with n=1 at initial time.

When α tends to zero the Maxwell-Poisson equation degenerates into the algebric
equation n=1. This condition has to be satisfied at initial time.

When α is equal to zero we lose the possibility to obtain the electric field from the
Maxwell-Ampere equation on collisional time scale. The limit is a singular limit, because
the Maxwell-Ampere equation degenerates into an algebric equation.

2.5 Reformulation of the Maxwell-Ampere equation in the simplified case.

The aim of this part is to provide a reformulation of the Maxwell-Ampere equation that is
equivalent and contains explicitly the quasi-neutral limit as a particular case when α=0
for the electrostatic case with only one dimension for space and one for the velocity.
Multiplying the first equation of (2.20) by v, integrating in velocity and using the defini-
tion of the dimensionless current

j=−
∫

R
f vdv, (2.22)

we obtain

−∂j
∂t
+∂x(

∫
R

v2 f dv)−E
∫

R
v∂v f dv=

∫
R

Ce,ivdv. (2.23)

In (2.10) we have seen that ∫
R

v Ce,e( f , f )dv=0. (2.24)

It is important to notice that it is not the case for the electron-ion collision operator
Ce,i (see 2.11).

The derivation in time of the Maxwell-Ampere equation in the electrostatic case leads
to

∂j
∂t

=−α2 ∂2E
∂t2 . (2.25)
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By using (2.23), we get

α2 ∂2E
∂t2 −E

∫
R

v∂v f dv=−∂x(
∫

R
v2 f dv)+

∫
R

Ce,ivdv. (2.26)

As
E
∫

R
v∂v f dv=−nE, (2.27)

the equation (2.26) becomes

α2 ∂2E
∂t2 +nE=−∂x(

∫
R

v2 f )dv+
∫

R
Ce,ivdv. (2.28)

When the parameter α tends to 0, we find the limit problem

nE=−∂x(
∫

R
v2 f dv)+

∫
R

Ce,ivdv. (2.29)

So the electrostatic field writes

E=
−∂x(

∫
R

v2 f dv)+
∫

R
Ce,ivdv

n
. (2.30)

In this part we have shown that the Fokker-Planck-Landau-Maxwell system (2.20) is
equivalent to the Fokker-Planck-Landau-Maxwell reformulated system


∂ f
∂t

+∂x(v f )−∂v(E f )=Ce,e( f , f )+Ce,i( f ) ,

α2 ∂2E
∂t2 +nE=−∂x(

∫
R

v2 f )dv+
∫

R
Ce,ivdv,

(2.31)

where Maxwell-Poisson has to be satisfied at initial time.

The limit system when α→0 is the following one


∂ f
∂t

+∂x(v f )−∂v(E f )=Ce,e( f , f )+Ce,i( f ) ,

E=
−∂x(

∫
R

v2 f dv)+
∫

R
Ce,ivdv

n
,

(2.32)

where n=1 and j=0 at initial time.

The second equation of (2.20) imposes j = 0 when α = 0. This condition has to be
satisfied at initial time.
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2.6 Reformulation of the Maxwell-Ampere equation in the general case.

In this part, we generalise the method of the previous part to a non-homogeneous colli-
sional plasma with magnetic field in multi-dimensions.

Multiplying this first equation of (2.19) by −v, integrating in velocity and using the
definition of the dimensionless current (2.22) we get

− ∂j
∂t
+divx(

∫
Rn

v⊗v f dv)−
∫

Rn
v(E+v×B).∇v f dv=

∫
Rn

Ce,i( f )vdv. (2.33)

As ∫
Rn
(v×B).∇v f v dv= j×B, (2.34)

the same development as in the electrostatic case is performed.

The derivation in time of the Maxwell-Ampere equation in the general case leads to

∂j
∂t

=−α2 ∂2E
∂t2 +

α2

β2

[
∇x×

∂B
∂t
]
. (2.35)

Finally the following form is obtained

α2 ∂2E
∂t2 +neE−j×B=−divx(

∫
Rn

v⊗v f dv)+
α2

β2

[
∇x×

∂B
∂t
]
+
∫

Rn
Ce,i( f )vdv. (2.36)

When α tends to 0 in (2.36) we find the limit problem

neE=−divx(
∫

Rn
v⊗v f dv)+

∫
Rn

Ce,i( f )vdv+j×B. (2.37)

So the electrostatic field writes

E=
−divx(

∫
Rn v⊗v f dv)+

∫
Rn Ce,i( f )vdv+j×B

ne
. (2.38)

In this part we have shown that the Fokker-Planck-Landau-Maxwell system (2.19) is
equivalent to the Fokker-Planck-Landau-Maxwell reformulated system
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∂ f
∂t

+v.∇x f−(E+v×B).∇v f =Ce,e( f , f )+Ce,i( f ) ,

α2 ∂2E
∂t2 +neE−j×B=−divx(

∫
Rn

v⊗v f dv)+
α2

β2

[
∇x×

∂B
∂t
]
+
∫

Rn
Ce,i( f )vdv,

∂B
∂t

+∇x×E=0,

(2.39)

where Maxwell-Poisson and Maxwell-Thomson have to be satisfied at initial time.

Remark 2. The fifth equation of the system (2.19) called Maxwell-Thomson equation
is not used. Indeed the third and fifth equation of (2.19) called Maxwell-Faraday equation
and Maxwell-Thomson equation are equivalent if Maxwell-Thomson equation is verified
at initial time.

The limit system of (2.39) when α→0 is the following one


∂ f
∂t

+v.∇x f−(E+v×B).∇v f =Ce,e( f , f )+Ce,i( f ) ,

neE−j×B=−divx(
∫

Rn
v⊗v f dv)+

∫
Rn

Ce,ivdv ,
∂B
∂t

+∇x×E=0,

(2.40)

where n=1 and j=0 have to be satisfied at initial time.

The second equation of (2.40) is called the Generalised Ohm’s law.

In this part, a reformulation of the Maxwell-Ampere equation containing the limit
case α=0 has been performed. This derivation will enable us to construct an Asymptotic-
Preserving numerical scheme for the quasi-neutral regime.

3 Discrete model

3.1 Limitation of the classical numerical scheme.

A classical numerical scheme for the Maxwell-Ampere equation in the collisional regime
writes
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En+1
i =En

i −
jn
i ∆t
α2 . (3.1)

The stability of this scheme depends directly on the parameter α. So, when α tends to
0, (3.1) can not be used to calculate the new electric field En+1

i .

The aim of the following part is to establish a numerical scheme which contains ex-
plicitly the quasi-neutral case when α=0. In this way, a new numerical scheme is devel-
oped for the reformulated Maxwell-Ampere equation.

3.2 Construction of an Asymptotic-Preserving Maxwell-Ampere numerical scheme.

In this part the construction of an Asymptotic-Preserving scheme for the Maxwell-Ampere
reformulated equation is explained. In this first part the numerical scheme is derived in
the case of a non-homogeneous collisional plasma without magnetic field. The next part
extends the method to the non-homogeneous collisional case with electromagnetic fields.

3.2.1 Case of a non-homogeneous collisional plasma without magnetic field.

In this part an Asymptotic-Preserving scheme is constructed for the second equation of
(2.31).

Let us define the primal meshM for the velocity variable v, decomposed into a fam-
ily of rectanglesMp+ 1

2
=]vp,vp+1[ ∀p∈{−p f ;p f } where vp = p∆v and p∈N represents

the number of points which discretize the velocity domain. ∆v represents the energy dis-
cretisation step, which is fixed. Denote by D its associated dual mesh consisting of cells
Dp=]vp− 1

2
,vp+ 1

2
[ where vp− 1

2
=(p− 1

2 )∆v. In the same way, a primal meshN is defined for
the space variable x, decomposed into a family of rectangles Ni+ 1

2
=]xi,xi+1[ ∀i∈{1;l f }

where xi = i∆x and i∈N represents the number of points which discretize the space do-
main. ∆x represents the space discretisation step, which is fixed. We denote by E its
associated dual mesh consisting of cells Ei =]xi− 1

2
,xi+ 1

2
[ where xi− 1

2
= (i− 1

2 )∆x. Let hi,p

(resp. hi+ 1
2 ,p+ 1

2
) be an approximation of h(xi,vp) (resp h(xi+ 1

2
,vp+ 1

2
)) for all distribution

functions h. The velocity grid is chosen large enough to have fi,p f = fi,−p f =0 ∀i∈{1;l f }
which means that there are no particles with such velocities.

By using a conservative discretisation for the Fokker-Planck-Landau equation we ob-
tain

f n+1
i,p − f n

i,p

∆t
+

(v f n)
i+ 1

2 ,p
−(v f n)

i− 1
2 ,p

∆x −
(En+1 f n)

i,p+ 1
2
−(En+1 f n)

i,p− 1
2

∆v =Cn
ee,i+Cn

ei,i, (3.2)
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where the computation of the numerical fluxes is given by

(v f n)i+ 1
2 ,p =vp(

f n
i,p+ f n

i+1,p

2
)−
|vp|

2
( f n

i+1,p− f n
i,p), (3.3)

(En+1 f n)i,p+ 1
2
=En+1

i (
f n
i,p+ f n

i,p+1

2
)−
|En+1

i |
2

( f n
i,p+1− f n

i,p), (3.4)

and

Cn
ei,i =

1
∆v

[
Sp+ 1

2

f n
i,p+1− f n

i,p

∆v
−Sp− 1

2

f n
i,p− f n

i,p−1

∆v

]
(3.5)

with

Sp+ 1
2
=S(

vp+vp+1

∆v
). (3.6)

The expression of S is given in (2.8). The numerical scheme for the operator Cee,i is not
given, because using (2.10) this term cancels in the calculation. It is important to notice
that the electrostatic field is chosen implicit. It will be shown that this choice enables the
calculation of the electrostatic field when α→0.

Using the above numerical fluxes, (3.2) reads

f n+1
i,p − f n

i,p

∆t
+

vp

[
f n
i+1,p− f n

i−1,p

]
−|vp|

[
f n
i+1,p−2 f n

i,p+ f n
i−1,p

]
2∆x

−
En+1

i

[
f n
i,p+1− f n

i,p−1

]
−|En+1

i |
[

f n
i,p+1−2 f n

i,p+ f n
i,p−1

]
2∆v

=Cn
ee,i+Cn

ei,i.

Multiplying the previous equation by −vp∆v and summing in p leads to

−∑p vp f n+1
i,p ∆v+∑p vp f n

i,p∆v

∆t
− ∆v

2∆x ∑
p

[
v2

p

(
f n
i+1,p− f n

i−1,p

)
−vp|vp|

(
f n
i+1,p−2 f n

i,p+ f n
i−1,p

)]
+

1
2 ∑

p

[
vpEn+1

i

(
f n
i,p+1− f n

i,p−1

)
−|En+1

i |vp

(
f n
i,p+1−2 f n

i,p+ f n
i,p−1

)]
=−∑

p
Cn

ei,ivp∆v.
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Then using the discrete definition of the current

ji =−∑
p

vp fi,p∆v (3.7)

the computation of the previous equation leads to

jn+1
i − jn

i
∆t

− ∆v
2∆x ∑

p

[
v2

p

(
f n
i+1,p− f n

i−1,p

)
−vp|vp|

(
f n
i+1,p−2 f n

i,p+ f n
i−1,p

)]
+

1
2 ∑

p

[
vpEn+1

i

(
f n
i,p+1− f n

i,p−1

)
−|En+1

i |vp

(
f n
i,p+1−2 f n

1,i,p+ f n
i,p−1

)]
=−∑

p
Cn

ei,ivp∆v.

The following scheme for the Maxwell-Ampere equation is used

En+1
i −En

i
∆t

=−
jn+1
i
α2 . (3.8)

Contrarily to the classical scheme (3.1) the current j in (3.8) is chosen implicit.

By using (3.8), we get

−α2 En+1
i −2En

i +En−1
i

∆t2 − ∆v
2∆x ∑

p

[
v2

p

(
f n
i+1,p− f n

i−1,p

)
−vp|vp|

(
f n
i+1,p−2 f n

i,p+ f n
i−1,p

)]
+

1
2 ∑

p

[
vpEn+1

i

(
f n
i,p+1− f n

i,p−1

)
−|En+1

i |vp

(
f n
i,p+1−2 f n

1,i,p+ f n
i,p−1

)]
=−∑

p
Cn

ei,ivp∆v.

Remark 3. It is important to notice that

∑
p
|En+1

i |vp

(
f n
i,p+1−2 f n

i,p+ f n
i,p−1

)
=0.

Indeed a discrete integration by part gives
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∑
p
|En+1

i |vp

(
f n
i,p+1−2 f n

i,p+ f n
i,p−1

)
= |En+1

i |
[
∑

p
vp( f n

i,p+1− f n
i,p)−∑

p
vp+1( f n

i,p+1− f n
i,p)
]
,

= |En+1
i |

[
∑

p
(vp−vp+1)( f n

i,p+1− f n
i,p)
]
,

=−|En+1
i |∆v

[
∑

p
( f n

i,p+1− f n
i,p)
]
,

=0

because of boundary condition f n
i,p f = f n

i,−p f = 0. Therefore, no linearisation nor ap-

proximation is required to compute En+1
i .

Finally, the Asymptotic-Preserving scheme for the second equation of (2.31) writes

−α2 En+1
i −2En

i +En−1
i

∆t2 − ∆v
2∆x ∑

p

[
v2

p

(
f n
i+1,p− f n

i−1,p

)
−vp|vp|

(
f n
i+1,p−2 f n

i,p+ f n
i−1,p

)]
+

En+1
i
2 ∑

p
vp

(
f n
i,p+1− f n

i,p−1

)
=−∑

p
Cn

ei,ivp∆v

which is the numerical scheme for the reformulated Maxwell-Ampere equation in the
case of a inhomogeneous collisional plasma.

In the limit case when α tends to zero, the scheme becomes

En+1
i =

∆v
∆x ∑p

[
v2

p

(
f n
i+1,p− f n

i−1,p

)
−vp|vp|

(
f n
i+1,p−2 f n

i,p+ f n
i−1,p

)]
−2∑p Cn

ei,ivp∆v

∑p vp

(
f n
i,p+1− f n

i,p−1

) . (3.9)

In the case the expression obtained is well consistent with the limit equation (2.30),
this is a key point to obtain the asymptotic preserving property.

3.2.2 Generalisation to a non-homogeneous collisional plasma with electromagnetic
fields.

In this part we derive the numerical scheme for the reformulated Maxwell-Ampere equa-
tion in the simplified case of 1 dimension in space and 3 dimensions in velocity. The
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scheme can be extended to the case of 3 dimensions in space. We consider a cartesian
case with an electric and a magnetic field of the form

E=(Ex(t,x,y),Ey(t,x,y),0), B=(0,0,Bz(t,x,y)). (3.10)

Following the same method as for the electrostatic case, we derive the following nu-
merical scheme for the reformulated Maxwell-Ampere equation

−α2 En+1
x,l −2En

x,l+En−1
x,l

∆t2 −∆vx∆vy∆vz ∑
i,j,k

(
En+1

x,l + j∆vyBn+1
z,l

)
f n
l,i,j,p

−∆v2
x∆vz ∑

i,j,k
vx,i

(
En+1

y,l −i∆vxBn+1
z,l

)
f n
l,i,j,p

=−∑
i,j,k

Cn
ei,ivx,i∆vx∆vy∆vz+

∆vx∆vy∆vz

2∆x ∑
i,j,k

[
v2

x,i

(
f n
l+1,i,j,k− f n

l−1,i,j,k

)
−vx,i|vx,i|

(
f n
l+1,j,k,p−2 f n

l,i,j,k+ f n
l−1,i,j,k

)]
,

−α2
En+1

y,l −2En
y,l+En−1

y,l

∆t2 −∆v2
y∆vz ∑

i,j,k

(
En+1

x,l + j∆vyBn+1
z,l

)
f n
l,i,j,p

−∆vx∆vy∆vz ∑
i,j,k

vx,i

(
En+1

y,l −i∆vxBn+1
z,l

)
f n
l,i,j,p

=−∑
i,j,k

Cn
ei,ivy,i∆vx∆vy∆vz+

α2

β2∆t

[Bn+1
z,l+1−Bn+1

z,l−1

2∆x
−

Bn
z,l+1−Bn

z,l−1

2∆x

]
+

∆vx∆vy∆vz

2∆x ∑
i,j,k

[
vy,ivx,i

(
f n
l+1,i,j,k− f n

l−1,i,j,k

)
−vy,i|vx,i|

(
f n
l+1,i,j,k−2 f n

l,i,j,k+ f n
l−1,i,j,k

)]
,

where l is the index for space, i the index for the first coordinate in speed, j for the
second and k for the third. Also ∆t, ∆x, ∆vx, ∆vy, ∆vz are respectively the time step, the
space step, the velocity step in the first, second and third dimension. In this case there
are two equations, we notice they are coupled.
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3.3 Stability property

The asymptotic-preserving property also requires that the scheme is uniformly stable
with respect to the parameter α. The rigorous proof of the asymptotic stability property
is challenging and in general, the few results presented describe simplified linearised
models where a linear stability study is conducted ( [16,17]). In the present case, because
of the dependence of the space and velocity variables in addition to the collisional oper-
ators such a property is not easily derived and a rigorous stability analysis of the method
seems beyond the scope of this paper. However, we can give some elements of proof in
a simplified case of a linearised collisionless homogeneous case with one dimension for
velocity (v∈R) without magnetic field. The model reads


∂ f
∂t
−E

∂ f
∂v

=0,

α2 ∂E
∂t

=−j.

We consider the following linearisation around the equilibrium state given by a Maxwellian
distribution function with no electric field

f = f m+ f 1, E=0+E1,

with f m a Maxwellian distribution function. The linearised system reads


∂ f 1

∂t
+2E1v f m =0,

α2 ∂E1

∂t
=−j1.

(3.11)

In the numerical method proposed, the electric field is chosen implicit as well as the
electronic current. Then omitting the index 1 for simplicity, the numerical scheme reads


f n+1
p − f n

p

∆t
+2En+1vp f m

p =0,

α2 En+1−En

∆t
=−jn+1=

p f

∑
p=−p f

f n+1
p vp∆v.

(3.12)

The previous system can also be written in the following linear system form
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E
f−p f

f−p f +1
...

fp f−1

fp f



n+1

=Mα



E
f−p f

f−p f +1
...

fp f−1

fp f



n

where the matrix Mα is given by

Mα =



Aαα2

∆t Aα∆vv−p f ··· Aα∆vvp f

−
Bα
−p f

α2

∆t 1−Bα
−p f

∆vv−p f ··· −Bα
−p f ∆vvp f

...
...

. . .
...

−
Bα

p f
α2

∆t −Bα
p f

∆vv−p f ··· 1−Bα
p f ∆vvp f


with

Aα =
∆t

α2+2∆t2
p f

∑
p=−p f

f m
p v2

p∆v
, Bα

p =
2∆t2 f m

p vp

α2+2∆t2
p f

∑
p=−p f

f m
p v2

p∆v
.

The eigenvalues of the matrix Mα are given by

1,1,...,1︸ ︷︷ ︸
2p f−1

, K+i
√

K−K2, K−i
√

K−K2,

with K=
α2

(α2+2∆t2
p f

∑
p=−p f

f m
p v2

p∆v)
.

As α∈[0,1] one remarks that K∈[0,1]. It follows that the eigenvalues of Mα are in mod-
ulus less or equal than 1. The numerical scheme (3.12) for the simplified model (3.11) is
then stable for all α. One remarks that in spite of the simplicity of the model (3.11), the
form of the matrice Mα is not trivial and an extension to the general model seems chal-
lenging. However, in a more general case, the numerical tests for the wide range of input
parameters, witness of the stability of the method.

Kinetic codes are usually numerically expensive and limited to short time scales. An-
gular moments models can be seen as a compromise between kinetic and fluid models.
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4 The Asymptotic-Preserving scheme for the M1-Maxwell mo-
ments model

This part is devoted to the derivation of an Asymptotic-Preserving scheme for the M1
model associated to the system (2.19). For the sake of clarity, we firstly recall the deriva-
tion of the M1 model that is performed in ( [20,29,30]) and next we present the numerical
scheme.

4.1 Moments models.

If S2 is the unit sphere,
−→
Ω =

−→v
|v| represents the direction of propagation of the particle and

µ=Ωx=cos θ, θ∈[0,π]. In this part, we choose a one dimensional direction of propagation,
i.e we take µ∈ [−1,1] as the direction of propagation instead of

−→
Ω . By setting, ζ = |v|

the distribution function f writes in spherical coordinates f (µ,ζ,x). Hence the three first
angular moments of the distribution function are given by

f0(ζ)= ζ2
∫ 1

−1
f (µ,ζ)dµ, f1(ζ)= ζ2

∫ 1

−1
f (µ,ζ)µdµ, f2(ζ)= ζ2

∫ 1

−1
f (µ,ζ)µ2dµ.

For moment models one fundamental point is the definition of the closure which
guarantees that the highest moment writes as a function of the previous ones. This clo-
sure corresponds to an approximation of the distribution function from which the mo-
ment system is constructed.

4.2 Closure for the M1 moment model.

In order to close the problem we need to define f2 as a function of f0 and f1. For the
M1 model, the construction of the closure is based on an entropy minimum principle
( [28, 32]). Indeed the closure is obtained by solving

min
g≥0
{ H(g) / ∀ζ∈R+,

∫ 1

−1
g(µ,ζ)dµ= f0(ζ),

∫ 1

−1
g(µ,ζ)µdµ= f1(ζ) }, (4.1)

whereH is the Boltzmann entropy defined in (2.13).

The entropy minimum principle implies that the solution of (4.1) writes ( [20, 21, 29])

f (µ,ζ)=ρ(ζ)exp(−µ a1(ζ)), (4.2)

where ρ(ζ) is a positive scalar, and a1(ζ) a real valued scalar.

Referring to ( [20]), f2 writes
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f2=χ( f0, f1) f0 with χ=
|a1|2−2|a1|coth(|a1|)+2

|a1|2
.

4.3 Collision operators.

Moments extraction of the electron-electron collision operator (2.6) is complicated due to
its nonlinearity. That is why, it is often simplified by considering only the isotropic part
of the distribution function ( [8]). Nevertheless, it has been shown ( [29]) that this sim-
plification does not preserve the realisibility domain which guarantees that the solution
of the moments system can be expressed as the moments of a nonnegative distribution
function. Consequently, the collisional operators that are used ( [29, 30]), are constructed
according to a linearisation around the equilibrium state of Cei. So Cee is approached by
Qee by using a linearisation around the isotropic part of the distribution function.

Hence, Qee writes

Qe,e( f )=
1
ζ2 ∂ζ

(
ζ
∫ +∞

0
J̃(ζ,ζ ′)

[
F0(ζ ′)

1
ζ

∂ζ f (ζ)− f (ζ)
1
ζ ′

∂ζ ′F0(ζ ′)
]
ζ ′2dζ ′

)
(4.3)

with

J̃(ζ,ζ ′)=
2
3

in f (
1
ζ3 ,

1
ζ ′3

)ζ ′2ζ2 (4.4)

and F0 is the isotropic part of the electron distribution function.

For the electron-ion operator, no approximation is performed because this operator
is already linear. In the following Qe,i will replace Ce,i to be consistent with the notation
(4.3) of Qe,e.

Qei( f )=
1
ζ3

∂

∂µ

(
(1−µ2)

∂ f
∂µ

)
. (4.5)

4.4 The M1 moment model.

The angular integration ( [30]) leads to

 ∂t f0+∇x.(ζ f1)−∂ζ(E f1)=Q0( f0),

∂t f1+∇x.(ζ f2)−∂ζ(E f2)+E
( f0− f2)

ζ
=Q1( f1)+Q0( f1),

(4.6)

where the collisional operators Q0 and Q1 are given by
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Q0( f0)=
2
3

∂ζ

(
ζ2A(ζ)∂ζ(

f0

ζ2 )−ζB(ζ) f0

)
, (4.7)

Q1( f1)=−
2 f1

ζ3 . (4.8)

The coefficients A(ζ) and B(ζ) write

A(ζ)=
∫ ∞

0
min(

1
ζ3 ,

1
ω3 )ω

2 f0(ω)dω, (4.9)

B(ζ)=
∫ ∞

0
min(

1
ζ3 ,

1
ω3 )ω

3∂ω(
f0(ω)

ω2 )dω. (4.10)

4.5 A numerical scheme for the M1 model.

In this part the reformulation of the Maxwell-Ampere equation for the M1 model is de-
tailed. Considering a conservative scheme for the system (4.6) we write

f n+1
0,i,p − f n

0,i,p

∆t
+
(ζ f n

1 )i+ 1
2 ,p−(ζ f n

1 )i− 1
2 ,p

∆x
−
(En+1 f n

1 )i,p+ 1
2
−(En+1 f n

1 )i,p− 1
2

∆ζ
=0, (4.11)

f n+1
1,i,p − f n

1,i,p

∆t
+
(ζ f n

2 )i+ 1
2 ,p−(ζ f n

2 )i− 1
2 ,p

∆x
−
(En+1 f n

2 )i,p+ 1
2
−(En+1 f n

2 )i,p− 1
2

∆ζ
(4.12)

+
En+1

ζp
( f n

0,i,p− f n
2,i,p)=Qn

1,i,p+Qn
0,i,p.

The discrete collision operators involved in (4.12) are respectively given by

Qn
1,i,p = −

2 f n
1,i,p

ζ3
p

,

Qn
0,i,p =

2
3∆ζp

[
(ζ2

p+ 1
2
A(ζp+ 1

2
)

1
∆ζp+ 1

2

( f n
1,i,p+1

ζ2
p+1
−

f n
1,i,p

ζ2
p

)
−ζp+ 1

2
B(ζp+ 1

2
) f n

1,i,p+ 1
2
)

−(ζ2
p− 1

2
A(ζp− 1

2
)

1
∆ζp− 1

2

( f n
1,i,p

ζ2
p
−

f n
1,i,p−1

ζ2
p−1

)
−ζp− 1

2
B(ζp− 1

2
) f n

1,i,p− 1
2
)
]
.

Using HLL numerical fluxes in (4.11) and (4.12), it holds that
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f n+1
0,i,p − f n

0,i,p

∆t
+

ζp

[
f n
1,i+1,p− f n

1,i−1,p

]
−|ζp|

[
f n
0,i+1,p−2 f n

0,i,p+ f n
0,i−1,p

]
2∆x

−
En+1

i

[
f n
1,i,p+1− f n

1,i,p−1

]
−|En+1

i |
[

f n
0,i,p+1−2 f n

0,i,p+ f n
0,i,p−1

]
2∆ζ =0 (4.13)

and

f n+1
1,i,p − f n

1,i,p

∆t
+

ζp

[
f n
2,i+1,p− f n

2,i−1,p

]
−|ζp|

[
f n
1,i+1,p−2 f n

1,i,p+ f n
1,i−1,p

]
2∆x

−
En+1

i

[
f n
2,i,p+1− f n

2,i,p−1

]
−|En+1

i |
[

f n
1,i,p+1−2 f n

1,i,p+ f n
1,i,p−1

]
2∆ζ (4.14)

+
En+1

i
ζp

( f n
0,i,p− f n

2,i,p)=Qn
1,i,p+Qn

0,i,p.

Multiplying the previous equation (4.14) by −ζp∆ζ and summing in p leads to

−∑p ζp f n+1
1,i ∆ζ+∑p ζp f n

1,i∆ζ

∆t
−

∆ζ

2∆x ∑
p

[
ζ2

p

(
f n
2,i+1,p− f n

2,i−1,p

)
−ζ2

p

(
f n
1,i+1,p−2 f n

1,i,p+ f n
1,i−1,p

)]
+ (4.15)

1
2 ∑

p

[
ζpEn+1

i

(
f n
2,i,p+1− f n

2,i,p−1

)
−|En+1

i |ζp

(
f n
1,i,p+1−2 f n

1,i,p+ f n
1,i,p−1

)]
−

∑
p

En+1
i ( f n

0,i,p− f n
2,i,p)∆ζ=−∑

p
ζpQn

1,i,p∆ζ.

Here again, the term containing the electron-electron collision operator cancels.

We use the definition of the dimensionless current j

j=−
∫

R+
f1ζdζ, (4.16)

which can be written on the discrete form

jn
i =−∑

p
f n
1,i,pζp∆ζ. (4.17)

Therefore the scheme (4.15) becomes
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jn+1
i − jn

i
∆t

− ∆ζ

2∆x ∑
p

[
ζ2

p

(
f n
2,i+1,p− f n

2,i−1,p

)
−ζ2

p

(
f n
1,i+1,p−2 f n

1,i,p+ f n
1,i−1,p

)]
+

1
2 ∑

p

[
ζpEn+1

i

(
f n
2,i,p+1− f n

2,i,p−1

)
−|En+1

i |ζp

(
f n
1,i,p+1−2 f n

1,i,p+ f n
1,i,p−1

)]
(4.18)

− ∑
p

En+1
i ( f n

0,i,p− f n
2,i,p)∆ζ=−∑

p
ζpQn

1,i,p∆ζ.

Using the scheme (3.8), expression (4.18) becomes

−α2 En+1
i −2En

i +En−1
i

∆t2 − ∆ζ

2∆x ∑
p

[
ζ2

p

(
f n
2,i+1,p− f n

2,i−1,p

)
−ζ2

p

(
f n
1,i+1,p−2 f n

1,i,p+ f n
1,i−1,p

)]
+

1
2 ∑

p

[
ζpEn+1

i

(
f n
2,i,p+1− f n

2,i,p−1

)
−|En+1

i |ζp

(
f n
1,i,p+1−2 f n

1,i,p+ f n
1,i,p−1

)]
−En+1

i ∑
p
( f n

0,i,p− f n
2,i,p)∆ζ=−∑

p
ζpQn

1,i,p∆ζ.

Like for the kinetic scheme in (3.2.1), it holds that

∑
p
|En+1

i |ζp

(
f n
1,i,p+1−2 f n

1,i,p+ f n
1,i,p−1

)
=0. (4.19)

Therefore the final scheme obtained reads

En+1
i =

−α2 (2En
i −En−1

i )

∆t2 +β1( f n
0,i, f n

1,i)

− α2

∆t2 +β2( f n
0,i, f n

1,i)

, (4.20)

where the coefficients β1 and β2 are given by

β1=
∆ζ

2∆x ∑
p

[
ζ2

p

(
f n
2,i+1,p− f n

2,i−1,p

)
−ζ2

p

(
f n
1,i+1,p−2 f n

1,i,p+ f n
1,i−1,p

)]
−∑

p
ζpQn

1,i,p∆ζ,

β2=
1
2 ∑

p

[
ζp

(
f n
2,i,p+1− f n

2,i,p−1

)]
−∑

p
( f n

0,p,i− f n
2,p,i)∆ζ.

Remark 4. The stability of this new scheme does not depend on the parameter α. So,
the electrostatic field can be obtained even if α becomes equal to zero.
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Remark 5. Following the same procedure as for the Fokker-Planck-Maxwell system,
this reformulation can be generalised for multi-dimension problems with magnetic fields.

5 Numerical test cases

This section presents two physically relevant numerical experiments where opposite
regimes are considered. The first one studies two counterpropagating beams of elec-
trons. In this case collective electrostatic effects are predominant. The second one deals
with the relaxation of a localised temperature profile in the quasi-neutral regime. In this
regime collisions between particles dominates.

5.1 Two electron beams interaction.

In this part we study the interaction between two electron beams. This collisionless test
case enables us to study the regime where electrostatic effects are predominant. There-
fore for this test case we have Cee =Cei =0.

Consider two electron beams propagating at velocity v0 and v1. The dispersion rela-
tion is given by

1− 1
(ω−kv0)2−

1
(ω−kv1)2 =0,

where v0 and v1 denote the beams velocities.

This configuration can lead to electrostatic instabilities. Indeed, the solutions of the
form Aeiωt+ikx are unstable when ωI the imaginary part of ω is strictly positive. In the
case v0=−v1 we can show that the solution is stable if kv0≥

√
2.

This test is problematic for the M1 model. Indeed, if we consider two electron beams
propagating with opposite velocities the distribution function is well defined. Neverthe-
less, the M1 model considers only the angular moments f0 and f1. For the calculation
of f1 the two populations contributions cancel and we get f1 =0. The M1 model sees an
isotropic configuration which is not the reality. To overcome this problem we use the su-
perposition principle that is valid because the model is linear. Two particle populations
(one per beam) are considered. For each time step the M1 problem is solved for the first
population then for the second one. Hence the Maxwell equations are solved taking into
account the two distribution functions.

In the case of two streams propagating with opposite velocities vd and−vd, the initial
conditions are
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f (x,v,t=0)=0.5[(1+Acos(kx))Mvd(v)+(1−Acos(kx))M−vd(v)],

with

M±vd(v)=ne(
me

2πkBTe
)3/2exp

(−me(v∓vd)
2

2kBTe

)
.

The parameter A is introduced to perturb the initial condition in order to enable the
development of the electrostatic instability. The velocity modulus goes from 0 to 12 vth
and the space scale from 0 to 25 λDe. With 100 points for the space grid and 128 points for
the velocity modulus grid the results are converged. In Figure 1 the distribution function
is represented in the phase space for the initial time and the final time t = 30 plasma
periods. In this example vd =4, A=0.001 and periodical boundary conditions are used.
On the second plot the interaction between the two streams is observed.

v/vth

x/λDe x/λDe

Figure 1: Distribution function as a function of space and velocity at initial time (left) and after 30 plasma
periods (right).

Our results have been compared with a kinetic code ( [22]). In Figure 2, the evolution
of the electrostatic energy is represented as a function of time for the (M1-AP) code in
green and for a kinetic code in red. The first plot shows the results for A=0.001 and the
second one for A=0.1. In the case of small perturbations (A=0.001), the M1 model and
the kinetic code give analogous results. In the case of strong perturbations (A=0.1), the
(M1-AP) code and the kinetic code show some differences after a long time. In the case of
a strong perturbation, a non-linear regime is obtained and it is well-known that the M1
model is not accurate enough ( [20]).



26

-20

-10

0

lo
g

(E
_

el
ec

)

M1
kinetic

Linear regime (A = 0.001)

0 10 20 30
t

-20

-10

0

lo
g

(E
_

el
ec

)

M1
kinetic

Non-linear regime (A = 0.1)

Figure 2: Temporal evolution of the electrostatic energy (dimensionless units) in the linear regime (top) and in
the non-linear regime (bottom).

This numerical experiment shows the good behaviour of the (M1-AP) scheme in a
regime where electrostatic effects are predominant.

5.2 Hot spot relaxation.

We now study the relaxation of a localised temperature perturbation generated, for ex-
ample, by a short laser pulse. Suppose that the laser impulse duration is shorter than
the relaxation time. This phenomenon investigated by many authors ( [1], [4]) corre-
sponds physically to the heating of a plasma during a short time and to the relaxation
phenomenon which follows. The important temperature gradients due to the localised
heating induce a non-local heat transport. Here, we consider the collisional regime. This
configuration is particularly interesting because it enables to study the coupling of the
M1 model with the Maxwell-Ampere Asymptotic-Preserving scheme.

Initially the distribution function for electrons is a Maxwellian with a Gaussian tem-
perature profile

Te(x,t=0)=T0+T1exp(− x2

D2 ), (5.1)
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where the hot spot size D is a characteristic scale of inhomogenity. First we make a
few remarks on the formulation of the problem related to the ambipolar electric field. In
the case of a smooth temperature gradient, the following formula for the electric field is
obtained ( [33])

eE
me

=−
∇x
∫

R3 F0v7dv
6
∫

R3 F0v5dv
(5.2)

where F0 is the isotropic part of the electron distribution function. For a Maxwellian
distribution function, this field is expressed through the classical formula

eE=−Te

(∇xne

ne
+

5
2
∇xTe

Te

)
. (5.3)

The local heat flux is given by the Spitzer-Harm formula ( [34])

qSH =−κSH∇xTe (5.4)

with conductivity
κSH =

128
3π

Z+0.24
Z+4.2

nevthλei. (5.5)

Note that already for D−1λei >0.06/
√

Z, the classical transport theory is not applica-
ble.

In a first simulation presented here, we choose typical parameters for ICF studies
T0 = 1Kev, T1 = 4Kev and D = 8,44λei. There is no electric field at the initial time. We
choose specular reflection conditions for boundary conditions. The space scale goes from
−80λei to 80λei. The velocity modulus scale goes from 0 to 50 vth.

Figure 3 shows the evolution of the temperature and electric field profiles until 30
τei. Then at t = 2 τei, we observe that the temperature profile starts to relax to a colder
temperature and the electric field which is proportional to the gradient of temperature
also decreases. The numerical scheme reproduces the good behaviour of the hot spot
relaxation phenomenon.

The results of our M1-Asymptotic-Preserving scheme (M1-AP) have been compared
with the ones obtained by a kinetic code ( [31]). In Figure 4, the temperature and the
electrostatic field profiles are represented as a function of space for different times. The
(M1-AP) results are given in green while the kinetic results are in red. Both results show
a good agreement. Small differences are observed concerning the amplitude of the tem-
perature and the electric field. The relaxation phenomenon observed with the (M1-AP)
code is faster than the one with the kinetic code.
It is interesting to notice that there is a large difference of calculation time. The simu-
lation with the kinetic code requires the use of 50 processes during several days while
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Figure 3: Representation of the temperature and electric field as function of space for different times.

the (M1-AP) code only needs few minutes with one process. Moreover, thanks to the
rapidity of the M1 Asymptotic-Preserving code a mesh convergence study has been per-
formed. With 500 points for the space grid and 80 points for the energy grid the results
are converged. The time step used is ∆t = 10−3 τei in order to respect classical stability
conditions.
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Figure 4: Comparison of the temperature (left) and electric field (right) for a kinetic code [31] and the M1
Asymptotic-Preserving scheme.

Remark 6. In this case the parameter α which represents the ratio between the electron-
ion collision frequency and the electron plasma frequency is equal to 4.10−4. In order to
avoid a severe constraint on the time step we use the new M1-Asymptotic-Preserving
scheme. With the same CFL conditions, the classic Maxwell-Ampere numerical scheme
breaks down from the very first iterations.

Remark 7. It is important to notice that the Asymptotic-Preserving scheme is stable
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even in the case α=0.

In a second stage, a new simulation was performed in order to compare the results
obtained using the (M1-AP) scheme with the ones obtained using another kinetic code
( [2]) and a hydrodynamic code based on the classical transport theory ( [33]- [34]). For
the simulation presented, we choose the parameters T0 = 1Kev, T1 = 2Kev, Z = 80 and
D=100λei. The results are given at time t=120τei. The space scale goes from −2500λei to
2500λei. In Figure 5, the temperature and the heat flux are represented for the three codes.
Dimensionless quantities are used here. It appears that the three temperature profiles are
very close. The hydrodynamic temperature is slightly smaller than the two others while
the (M1-AP) scheme and the kinetic scheme are in very good agreement. The different
heat flux profiles are also compared in Figure 5. The (M1-AP) flux and the kinetic flux are
close and it appears that the (M1-AP) flux is slightly more spread out. The hydrodynamic
flux on the contrary is much larger than the two others and is also more localised. In this
regime, one can again observe the good behaviour of the (M1-AP) scheme. This scheme
gives close results with the kinetic code while the hydrodynamic approach overestimates
the heat flux.
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Figure 5: Comparison of the temperature (left) and heat flux (right) for a kinetic code [2], a hydrodynamic
code and the M1 Asymptotic-Preserving scheme.

6 Conclusion

In this work, we have constructed an Asymptotic-Preserving scheme for the full
Fokker-Planck-Landau-Maxwell system which handles the quasi-neutral limit without
any contraction of time and space steps. It is important to note that this model is con-
sidered with real collisional operators. This fact is important in plasma physics because
the model is relevant for Coulombian interactions. We have first established a reformu-
lated Fokker-Planck-Landau-Maxwell system then used it to construct the Asymptotic-
Preserving scheme. The method has been extended to the general case of collisional
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plasmas in electromagnetic fields for multi-dimensions problems. An M1-Asymptotic-
Preserving scheme has been derived. Next, the M1-Asymptotic-Preserving scheme has
been implemented and two numerical test cases have been performed. The first one cor-
responds to a regime where electromagnetic effects are predominant. The second one
on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-
neutral regime. The scheme, accurate and fast, works in both regimes.

In this paper and in previous ones ( [29, 30]), the ions have been considered as fixed
due to their important masses compared to the one of electrons. The model must be
extended to study time intervals during which ion motion can not be neglected anymore.
Therefore, we expect to develop in a forthcoming paper a model taking into account ion
motion.
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