Modélisation et méthodes numériques pour l'étude du transport de particules dans un plasma

Sébastien Guisset

Soutenance de thèse de l'Université de Bordeaux Talence, le 23 Septembre 2016

Directeur de thèse : **Stéphane Brull**, Institut Mathématiques de Bordeaux Co-Directeur de thèse : **Emmanuel d'Humières**, Laboratoire Celia

Physical context

 \hookrightarrow Contribution to the modelling and numerical methods for the transport of charged particles in plasmas

 \hookrightarrow Hot plasmas created by lasers

General context: Understanding of the processes leading to ignition of the fusion reactions by inertial confinement

Multiphysics processes:

- Laser-plasma absorption
- Neutron production
- Radiative transfer
- Transport of particles

Related research areas:

- Hypersonic flows
- Radiotherapy
- Magnetic confinement fusion
- Astrophysics

 \hookrightarrow long time regimes studies (hydrodynamics scales)

Sébastien GUISSET

Outline

- 1. Modelling in plasma physics: the angular moments models
- 2. Numerical methods for the study of the particle transport on large scales
- 3. First step towards multi-species modelling: the angular ${\it M}_1$ model in a moving frame
- 4. Conclusion / Perspectives

Modelling

Plasma: set of totally ionised atoms. Electronic transport, fixed ions Kinetic description: electron distribution function f(t, x, v),

↔ Resolution of the Vlasov or Fokker-Planck-Landau equation

Accurate but numerically expensive (usually limited to short scales)

Hydrodynamic description: cheap but less accurate for far equilibrium regimes

 \hookrightarrow describe kinetic effects on fluid time scales is challenging!

 \hookrightarrow Intermediate description, angular moment models.

Angular moments models

 \hookrightarrow Angular moments extraction: $v = \zeta \Omega$ with $\zeta = |v|$.

$$f_0(\zeta) = \zeta^2 \int_{S_2} f(v) d\Omega, \quad f_1(\zeta) = \zeta^2 \int_{S_2} f(v) \Omega d\Omega, \quad f_2(\zeta) = \zeta^2 \int_{S_2} f(v) \Omega \otimes \Omega d\Omega.$$

Set of admissible states¹

$$\mathcal{A}=\Big((\mathit{f}_0,\mathit{f}_1)\in\mathbb{R} imes\mathbb{R}^3, \ \mathit{f}_0\geq0, \ |\mathit{f}_1|\leq \mathit{f}_0\Big).$$

Angular moments model

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \frac{q}{m} \partial_\zeta (f_1 . E) = 0, \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \frac{q}{m} \partial_\zeta (f_2 E) - \frac{q}{m\zeta} (f_0 E - f_2 E) - \frac{q}{m} (f_1 \wedge B) = 0. \end{cases}$$

 \hookrightarrow Closure relation?

¹D. Kershaw, Tech. Report (1976).

Sébastien GUISSET

The P_N closure

Spherical Harmonic expansion²

$$f(t,x,\zeta,\Omega) = \frac{1}{4\pi} \sum_{n=0}^{+\infty} \sum_{m=-n}^{n} A_n^m f_n^m(t,x,\zeta) Y_n^m(\Omega),$$

with

$$Y_n^m(\Omega) = P_n^{|m|}(\cos\theta)e^{im\varphi}, \qquad A_n^m = \frac{(2n+1)(n-|m|)!}{(n+|m|)!},$$

and $P_n^m(z)$ are the associated Legendre functions³.

 \hookrightarrow Positivity of the distribution function is required

 \hookrightarrow Positive P_N closure ⁴

 \hookrightarrow We prefer a closure based on a entropy minimisation criterion⁵

²Pomraning, Pergamon Press (1973).

- ³Abramowitz and Stegun. Dover Publications (1964).
- ⁴Hauck and McLarreen. Siam J. Sci. Comput. (2010).
- ⁵G.N. Minerbo, J. Quant. Spectrosc. Ra. (1978).

Sébastien GUISSET

The M_1 closure

Determination of f_2 as a function of f_0 and f_1 : Entropy minimisation problem^{6,7}.

$$\begin{split} \min_{f \ge 0} \left\{ \begin{array}{ll} \mathcal{H}(f) \ / \ \forall \zeta \in \mathbb{R}^+, \ \zeta^2 \int_{S^2} f(\Omega, \zeta) d\Omega &= f_0(\zeta), \ \zeta^2 \int_{S^2} f(\Omega, \zeta) \Omega d\Omega = f_1(\zeta) \end{array} \right\}, \\ & \text{ with } \ \mathcal{H}(f) = \zeta^2 \int_{S^2} (f \ \ln \ f \ - \ f) d\Omega. \end{split}$$

Entropy minimisation principle⁸:

$$f(\Omega,\zeta) = \exp(a_0(\zeta) + a_1(\zeta).\Omega) \ge 0,$$

- positivity
- hyperbolicity
- entropy dissipation

Expression of f_2 :

$$f_{2} = \left(\frac{1-\chi(\alpha)}{2}Id + \frac{3\chi(\alpha)-1}{2}\frac{f_{1}}{|f_{1}|} \otimes \frac{f_{1}}{|f_{1}|}\right)f_{0},$$
$$\chi(\alpha) = \frac{1+|\alpha|^{2}+|\alpha|^{4}}{2}, \qquad \alpha = f_{1}/f_{0}.$$

with

⁶G.N. Minerbo, J. Quant. Spectrosc. Ra. (1978).

⁷D. Levermore, J. Stat. Phys. (1996).

⁸B. Dubroca and J.L. Feugeas. C. R. Acad. Sci. Paris Ser. I (1999).

3

Sébastien GUISSET

Advantages and limitations of the M_1 model

Advantages

- Intermediate models (compromise)
- Application to radiative transfer and radiotherapy
- Accurate for isotropic configurations or configurations with one dominant direction⁹

Limitations

- Validity of angular moments models for kinetic plasma studies?
- Complex configurations in collisionless regimes¹⁰ (not presented here, see chapter 2)

\hookrightarrow Adapted for collisional plasma applications

¹⁰Guisset, Moreau, Nuter, Brull, d'Humières, Dubroca, Tikhonchuk. J. Phys. A Math. Theor. (2015).

⁹Dubroca, Feugeas and Frank. Eur. Phys. J. (2010).

Collisional operators

Electronic Fokker-Planck-Landau equation

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{\mathsf{x}} f + \frac{q}{m} (E + v \times B) \cdot \nabla_{\mathsf{v}} f = C_{\mathsf{ee}}(f, f) + C_{\mathsf{ei}}(f),$$

$$\begin{split} \mathcal{C}_{ee}(f,f) &= \alpha_{ee} \operatorname{div}_{\mathsf{v}} \Big(\int_{\mathsf{v}' \in \mathbb{R}^3} S(\mathsf{v}-\mathsf{v}') [\nabla_{\mathsf{v}} f(\mathsf{v}) f(\mathsf{v}') - f(\mathsf{v}) \nabla_{\mathsf{v}} f(\mathsf{v}')] \operatorname{dv}' \Big), \\ \mathcal{C}_{ei}(f) &= \alpha_{ei} \operatorname{div}_{\mathsf{v}} \Big(S(\mathsf{v}) \nabla_{\mathsf{v}} f(\mathsf{v}) \Big), \quad S(u) = \frac{1}{|u|^3} (|u|^2 \operatorname{Id} - u \otimes u). \end{split}$$

 \hookrightarrow C_{ee} non-linear: complex angular moments extraction

Simplification

$$C_{ee}(f,f) \approx Q_{ee}(F_0) = C_{ee}(F_0,F_0)^{11,12}$$
 $F_0 = \frac{f_0}{\zeta^2} = \int_{S^2} f d\Omega.$

 \hookrightarrow Angular moments extraction

¹¹Berezin, Khudick and Pekker J. Comput. Phys. (1987).
 ¹²Buet and Cordier J. Comput. Phys. (1998).

Sébastien GUISSET

Collisional operators

Electronic M_1 model:

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \partial_\zeta \left(\frac{qE}{m}f_1\right) = Q_0(f_0), \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \partial_\zeta \left(\frac{qE}{m}f_2\right) - \frac{qE}{m\zeta}(f_0 - f_2) = Q_1(f_1). \end{cases}$$

Collision operators

$$Q_0(f_0) = \alpha_{ee}\partial_{\zeta} \left(\zeta^2 A(\zeta)\partial_{\zeta} \left(\frac{f_0}{\zeta^2}\right) - \zeta B(\zeta)f_0 \right), \qquad Q_1(f_1) = -\alpha_{ei}\frac{2f_1}{\zeta^3},$$
$$A(\zeta) = \int_0^\infty \min(\frac{1}{\zeta^3}, \frac{1}{\mu^3})\mu^2 f_0(\mu)d\mu, \quad B(\zeta) = \int_0^\infty \min(\frac{1}{\zeta^3}, \frac{1}{\mu^3})\mu^3\partial_{\mu}(\frac{f_0(\mu)}{\mu^2})d\mu.$$

→ Admissibility requirement

Modification: admissible M_1 model¹³

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \partial_\zeta \left(\frac{qE}{m}f_1\right) = Q_0(f_0), \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \partial_\zeta \left(\frac{qE}{m}f_2\right) - \frac{qE}{m\zeta}(f_0 - f_2) = Q_1(f_1) + Q_0(f_1) \end{cases}$$

¹³J. Mallet, S. Brull and B. Dubroca. KRM (2015).

Collisional operators

Fundamental properties of the M_1 collisional operators^{14,15}:

- admissibility
- H-theorem (entropy dissipation)
- conservation properties
- caracterisation of the equilibrium states

 \hookrightarrow Long time behavior: derivation of the plasma transport coefficients

Boltzmann \rightarrow Chapman-Enskog expansion: Navier-Stokes

 $\label{eq:Fokker-Planck-Landau} \begin{array}{l} \rightarrow \mbox{ Spitzer-H\"arm approximation: Electron collisional} \\ \mbox{ hydrodynamics} \end{array}$

 $\begin{array}{rcl} \mbox{Electronic} \ M_1 \ \mbox{model} & \rightarrow \mbox{Spitzer-H\"arm approximation: Electron collisional} \\ & \mbox{hydrodynamics} \end{array}$

 $\hookrightarrow \mathsf{different}\ \mathsf{plasma}\ \mathsf{transport}\ \mathsf{coefficients}$

¹⁴Mallet, Brull, Dubroca. KRM (2015)

¹⁵Guisset, Brull, Dubroca, d'Humières, Tikhonchuk. Physica A (2016).

Sébastien GUISSET

Electron collisional hydrodynamics

Strongly collisional fully ionised hot plasma:

$$f(t, x, \zeta, \Omega) = \mathcal{M}_{f}(\zeta, T_{e}(t, x), n_{e}(t, x)) + \varepsilon F(t, x, \zeta, \Omega),$$

where $\varepsilon = \lambda_{ei}/L$,
$$\mathcal{M}_{f}(\zeta, T_{e}(t, x), n_{e}(t, x)) = n_{e}(t, x) \left(\frac{m_{e}}{2\pi T_{e}(t, x)}\right)^{3/2} \exp\left(-\frac{m_{e}\zeta^{2}}{2T_{e}(t, x)}\right),$$

$$F(t, x, \zeta, \Omega) = F_{0}(t, x, \zeta) + F_{1}(t, x, \zeta).\Omega.$$

Density and energy conservation laws:

$$\begin{cases} & \frac{\partial n_e}{\partial t} + \nabla_x . (n_e u_e) = 0, \\ & \frac{\partial T_e}{\partial t} + u_e . \nabla_x (T_e) + \frac{2}{3} T_e \nabla_x . (u_e) + \frac{2}{3n_e} \nabla_x . (q) = \frac{2}{3n_e} j.E, \end{cases}$$

where

$$j = -en_e u_e = -\frac{4\pi e}{3} \int_0^{+\infty} F_1 \zeta^3 d\zeta, \quad q = \frac{2\pi}{3} \int_0^{+\infty} F_1 (m_e \zeta^2 - 5T_e) \zeta^3 d\zeta.$$

 \hookrightarrow Closure: derivation of F_1

Plasma transport coefficients

Long time behavior

$$\mathcal{M}_f \zeta \Big(\frac{eE^*}{T_e} + \frac{1}{2T_e} \nabla_x (T_e) (\frac{m_e \zeta^2}{T_e} - 5) \Big) = -\frac{2\alpha_{ei}}{\zeta^3} F_1 + \frac{1}{\zeta^2} Q_0(\zeta^2 F_1),$$

with

$$E^* = E + (1/en_e)\nabla_x(n_e T_e).$$

 \hookrightarrow Solve an integro-differential equation¹⁶

 \hookrightarrow Expansion^{17,18} of F_1 on the generalised Laguerre polynomials

Closure

$$j = \sigma E^* + \alpha \nabla_x T_e, \quad q = -\alpha T_e E^* - \chi \nabla_x T_e.$$

¹⁶L. Spitzer and R. Härm. Phys. Rev. (1953).
 ¹⁷S.I. Braginskii. Rev. Plasma Phys. (1965).
 ¹⁸S. Chapman. Phil. Trans. Roy. Soc. (1916).

Sébastien GUISSET

Plasma transport coefficients¹⁹

¹⁹Guisset, Brull, Dubroca, d'Humières, Tikhonchuk. Physica A (2016).

Outline

1. Modelling in plasma physics: the angular moments models

2. Numerical methods for the study of the particle transport on large scales

3. First step towards multi-species modelling: the angular M_1 model in a moving frame

4. Conclusion / Perspectives

Long time behavior and singular limit

Different scales:

 $\lambda_{De}, au_{pe} \ << \ \lambda_{ei}, au_{ei} \ << \ L, T$

Quasi-neutral limit ($t^* >> \tau_{pe}$)

$$\begin{cases} \frac{\partial f}{\partial t} + v \cdot \nabla_{\mathsf{x}} f - (\mathsf{E} + v \times \mathsf{B}) \cdot \nabla_{\mathsf{v}} f = C_{ee}(f, f) + C_{ei}(f), \\ \frac{\partial \mathsf{E}}{\partial t} = -\frac{j}{\alpha^2}, \end{cases}$$

with $\alpha = \tau_{pe}/t^*$.

Diffusive limit²⁰ ($t^* >> \tau_{ei}$)

$$\begin{cases} \varepsilon \frac{\partial f}{\partial t} + v \cdot \nabla_{\mathsf{x}} f - (E + v \times B) \cdot \nabla_{\mathsf{v}} f = \frac{1}{\varepsilon} C_{ee}(f, f) + \frac{1}{\varepsilon} C_{ei}(f), \\ \frac{\partial E}{\partial t} = -\frac{j}{\varepsilon^3 \alpha^2}, \end{cases}$$

with $\varepsilon^2 = \tau_{ei}/t^*$. \hookrightarrow constraints on the numerical schemes \hookrightarrow asymptotic-preserving schemes

²⁰S. Bianchini, B. Hanouzet and R. Natalini. Commun. Pur. Appl. Math. (2007).

Sébastien GUISSET

Quasi-neutral limit ($t^* >> \tau_{pe}$)

As $\alpha \to 0$, impossibility to compute E^{n+1} .

 \hookrightarrow Reformulation^{21,22} of the M_1 -Maxwell model²³

Time semi-discretisation

$$\begin{aligned} \frac{f_1^{n+1} - f_1^n}{\Delta t} + \nabla_x(\zeta f_2^n) &- \partial_\zeta(\boldsymbol{E}^{n+1} f_2^n) + \frac{\boldsymbol{E}^{n+1}}{\zeta} (f_0^n - f_2^n) = Q_0(f_1^n) + Q_1(f_1^n). \end{aligned}$$
Electric current:
$$j^n &= -\int_0^{+\infty} f_1^n \zeta d\zeta, \\ \begin{cases} \frac{j^{n+1} - j^n}{\Delta t} = \beta_1(f_0^n, f_1^n) \boldsymbol{E}^{n+1} + \beta_2(f_0^n, f_1^n), \\ \frac{\boldsymbol{E}^{n+1} - \boldsymbol{E}^n}{\Delta t} = -\frac{j^{n+1}}{\alpha^2}. \end{cases} = \frac{-\frac{\alpha^2 \boldsymbol{E}^n}{\Delta t^2} + \beta_2(f_0^n, f_1^n) + \frac{j^n}{\Delta t}}{-\frac{\alpha^2}{\Delta t^2} - \beta_1(f_0^n, f_1^n)}. \end{aligned}$$

If $\alpha \to 0$ we can obtain E^{n+1} , Δt is not constrained by α (asymptotic stability). \hookrightarrow Realistic collision operators

²¹Degond, Liu, Savelief, Vignal J. Sci. Comp. (2012).

²²Degond, Deluzet, Savelief. J. Comp. Phys. (2012).

²³Guisset, Brull, d'Humières, Dubroca, Karpov, Potapenko. CICP (2016).

Sébastien GUISSET

Diffusive limit²⁴ ($t^* >> \tau_{ei}$)

 $\begin{array}{ll} \mbox{Diffusive scaling:} & \tilde{t}=t/t^*, \quad \tilde{x}=x/x^*, \quad \tilde{\nu}=\nu/\nu_{th}, \\ \mbox{such that } \tau_{ei}/t^*=\varepsilon^2, \ \lambda_{ei}/x^*=\varepsilon. \end{array}$

Dimensionless system (Lorentz approximation)

$$\begin{cases} \varepsilon \partial_t f_0 + \zeta \partial_x f_1 + E \partial_\zeta f_1 = 0, \\ \varepsilon \partial_t f_1 + \zeta \partial_x f_2 + E \partial_\zeta f_2 - \frac{E}{\zeta} (f_0 - f_2) = -\frac{2\sigma}{\zeta^3} \frac{f_1}{\varepsilon} \end{cases}$$

Hilbert expansion

$$f_0^{\varepsilon} = f_0^0 + \varepsilon f_0^1 + O(\varepsilon^2), \quad f_1^{\varepsilon} = f_1^0 + \varepsilon f_1^1 + O(\varepsilon^2).$$

Limit equation

$$f_1^0 = 0$$
,

$$\partial_t f_0^0 + \zeta \partial_x \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) + E \partial_\zeta \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) = 0.$$

 \hookrightarrow Mixed x and ζ derivatives

Sébastien GUISSET

²⁴Collaboration with R. Turpault

Derivation of the scheme: problem setting

Simplified case: no electric field

Model and diffusive limit

$$\begin{cases} \varepsilon \partial_t f_0^{\varepsilon} + \zeta \partial_x f_1^{\varepsilon} = 0, \\ \varepsilon \partial_t f_1^{\varepsilon} + \zeta \partial_x f_2^{\varepsilon} = -\frac{2\sigma}{\zeta^3} \frac{f_1^{\varepsilon}}{\varepsilon}. \\ \end{cases} \qquad \qquad \partial_t f_0^0(t,x) - \zeta \partial_x \Big(\frac{\zeta^4}{6\sigma(x)} \partial_x f_0^0(t,x) \Big) = 0. \end{cases}$$

Limit of the HLL scheme:

$$\begin{cases} \varepsilon \frac{f_{0i}^{n+1,\varepsilon} - f_{0i}^{n,\varepsilon}}{\Delta t} + \zeta \frac{f_{1i+1}^{n,\varepsilon} - f_{1i-1}^{n,\varepsilon}}{2\Delta x} - a_x \frac{f_{0i+1}^{n,\varepsilon} - 2f_{0i}^{n,\varepsilon} + f_{0i-1}^{n,\varepsilon}}{\Delta x} = 0, \\ \varepsilon \frac{f_{1i}^{n+1,\varepsilon} - f_{1i}^{n,\varepsilon}}{\Delta t} + \zeta \frac{f_{2i+1}^{n,\varepsilon} - f_{2i-1}^{n,\varepsilon}}{2\Delta x} - a_x \frac{f_{1i+1}^{n,\varepsilon} - 2f_{1i}^{n,\varepsilon} + f_{1i-1}^{n,\varepsilon}}{\Delta x} = -\frac{2\sigma_i}{\zeta^3} \frac{f_{1i}^{n+1,\varepsilon}}{\varepsilon} \end{cases}$$

← HLL numerical scheme: numerical viscosity in $O(\frac{\Delta x}{\varepsilon})$, wrong limit. ← New scheme to compute f_{0i}^{n+1}

Harten, Lax and van Leer formalism

Riemann problem for hyperbolic system of conservation laws

 $\partial_t U + \partial_x F(U) = 0,$

with $U \in \mathbb{R}^m$, $x \in \mathbb{R}$, t > 0. Initial conditions

ı.

$$U(x,t=0) = \begin{cases} U_L & \text{if } x < 0, \\ U_R & \text{if } x > 0. \end{cases}$$

 \hookrightarrow Self-similarity of the exact Riemann solution $U(x/t, U_L, U_R)$

Approximate Riemann solver

$$U_{RP}(x/t, U_L, U_R) = \begin{cases}
U_1 = U_L & \text{if } x/t < \lambda_1, \\
\vdots \\
U_k & \text{if } \lambda_{k-1} < x/t < \lambda_k \\
\vdots \\
U_L & U_L
\\
U_{l+1} = U_R & \text{if } x/t > \lambda_l.
\end{cases}$$

۸

Harten, Lax and van Leer formalism

Godunov-type scheme

$$U_i^{n+1} = rac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} U^h(x, t^{n+1}) dx,$$

$$U^{h}(x, t^{n+1}) = U_{RP}\left(\frac{x - x_{i+1/2}}{t^{n} + \Delta t}, U_{i}, U_{i+1}\right) \text{ if } x \in [x_{i}, x_{i+1}].$$

Consistency with the integral form of the hyperbolic system²⁵

$$\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \int_{0}^{\Delta t} (\partial_t U + \partial_x F(U)) dx dt = 0,$$

$$\hookrightarrow F(U_R) - F(U_L) = \sum_{k=1}^{l} \lambda_k (U_{k+1} - U_k).$$

²⁵A. Harten, P. Lax, B. Van Leer. Siam Review, 1983.

Sébastien GUISSET

Approximate Riemann solver

Source terms: approximate Riemann solvers which own a stationnary discontinuity^{26,27} (0-contact discontinuity).

 $\hookrightarrow \mathsf{Two intermediate states } U^{L*} = {}^t(f_0^{L*}, f_1^*) \mathsf{ and } U^{R*} = {}^t(f_0^{R*}, f_1^*).$

CFL condition $\Delta t \leq \frac{\Delta x}{2a_x}$.

$$f_{0i}^{n+1} = \frac{a_{X}\Delta t}{\Delta x} f_{0i-1/2}^{R*} + (1 - \frac{2a_{X}\Delta t}{\Delta x}) f_{0i}^{n} + \frac{a_{X}\Delta t}{\Delta x} f_{0i+1/2}^{L*}$$

²⁶F. Bouchut, Frontiers in Mathematics series (2004).
 ²⁷L. Gosse, Math. Mod. Meth. Apl. Sci. (2001)

Sébastien GUISSET

Derivation of f_1^*

Consistency condition for f_1^*

$$f_1^* = \frac{f_1^L + f_1^R}{2} - \frac{1}{2a_x}(\zeta f_2^R - \zeta f_2^L) - \frac{2}{\zeta^3} \frac{1}{2a_x \Delta t} \int_{-a_x \Delta t}^{a_x \Delta t} \int_0^{\Delta t} \sigma(x) f_1(x, t) dt dx.$$

Approximation (stiff source term)

$$\frac{1}{2a_{x}\Delta t}\int_{-a_{x}\Delta t}^{a_{x}\Delta t}\int_{0}^{\Delta t}\sigma(x)f_{1}(x,t)dtdx\approx\bar{\sigma}\Delta tf_{1}^{*},\qquad \bar{\sigma}=\sigma(0).$$

Definition of $f_1^{*, 28}$

$$f_1^* = \frac{2a_x\zeta^3}{2a_x\zeta^3 + 2\bar{\sigma}\Delta x} \Big[\frac{f_1^L + f_1^R}{2} - \frac{1}{2a_x}(\zeta f_2^R - \zeta f_2^L)\Big].$$

²⁸C. Berthon and R.Turpault. Numer. Meth. Part. D. E. (2011).

Sébastien GUISSET

Derivation of f_0^{L*} and f_0^{R*}

Consistency condition for f_0

$$\frac{f_0^{L*}+f_0^{R*}}{2}=\frac{f_0^L+f_0^R}{2}-\frac{1}{2a_x}(\zeta f_1^R-\zeta f_1^L).$$

Definition of f_0^{L*} and f_0^{R*}

$$\begin{cases} f_0^{L^*} = \tilde{f}_0 - \Gamma, \\ f_0^{R^*} = \tilde{f}_0 + \Gamma. \end{cases} \qquad \tilde{f}_0 = \frac{f_0^L + f_0^R}{2} - \frac{1}{2a_x}(\zeta f_1^R - \zeta f_1^L). \end{cases}$$

The Rankine-Hugoniot conditions gives **F**

$$\begin{cases} f_0^{L*} = f_0^L - \frac{\zeta}{a_x} (f_1^* - f_1^L), \\ f_0^{R*} = f_0^R - \frac{\zeta}{a_x} (f_1^R - f_1^*). \end{cases} \quad \Gamma = \frac{1}{2} [f_0^R - f_0^L - \frac{\zeta}{a_x} (f_1^L - 2f_1^* + f_1^R)]. \end{cases}$$

Admissibility conditions: modification of f_0^{L*} and f_0^{R*}

$$\begin{cases} f_0^{L^*} = \tilde{f}_0 - \Gamma \theta, \\ f_0^{R^*} = \tilde{f}_0 + \Gamma \theta. \end{cases} \qquad \qquad \tilde{\theta} = \frac{\tilde{f}_0 - |f_1^*|}{|\Gamma|} \ge 0, \qquad \qquad \theta = \min(\tilde{\theta}, 1). \end{cases}$$

Sébastien GUISSET

Properties of the scheme

Admissibility requirement

If $U_{i,j}^n \in \mathcal{A}$ then $U_{i,j}^{n+1} \in \mathcal{A}$ under the CFL condition $\Delta t \leq \Delta x/(2a_x)$.

Consistency in the limit regime

In the diffusive regime, the unknown $f_{0i}^{n+1,0}$ satisfies the discrete equation

$$\frac{f_{0i}^{n+1,0}-f_{0i}^{n,0}}{\Delta t}-\frac{\zeta}{\Delta x}\Big(\frac{\zeta^4}{6\bar{\sigma}_{i+1/2}\Delta x}(f_{0i+1}^{n,0}-f_{0i}^{n,0})-\frac{\zeta^4}{6\bar{\sigma}_{i-1/2}\Delta x}(f_{0i}^{n,0}-f_{0i-1}^{n,0})\Big)=0.$$

 \hookrightarrow In the limit $\theta = 1$, no limitation is required

\hookrightarrow Homogeneous case with electric field source term naturally included and well-balanced property

General model

Model

$$\begin{cases} \varepsilon \partial_t f_0 + \zeta \partial_x f_1 + E \partial_\zeta f_1 = 0, \\ \varepsilon \partial_t f_1 + \zeta \partial_x f_2 + E \partial_\zeta f_2 - \frac{E}{\zeta} (f_0 - f_2) = -\frac{2\sigma}{\zeta^3} \frac{f_1}{\varepsilon}. \end{cases}$$

Diffusive limit

$$\partial_t f_0^0 + \zeta \partial_x \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) + E \partial_\zeta \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) = 0.$$

Consider
$$\frac{f_{0ij}^{n+1} - f_{0ij}^n}{\Delta t} = \frac{a_x}{\Delta x} f_{0i-1/2j}^{R*} - \frac{2a_x}{\Delta x} f_{0ij}^n + \frac{2a_x\Delta t}{\Delta x} f_{0i+1/2j}^{L*} + \frac{a_\zeta}{\Delta \zeta} f_{0ij-1/2}^{R*} - \frac{2a_\zeta}{\Delta \zeta} f_{0ij}^n + \frac{a_\zeta}{\Delta \zeta} f_{0ij+1/2}^{L*}.$$

 \hookrightarrow Wrong asymptotic limit, mixed derivatives?

General model

Mixed derivatives: Modification of the intermediate state f_1^*

$$f_{1i+1/2j}^{*} = \alpha_{i+1/2j} \left(\frac{f_{1i+1j} + f_{1ij}}{2} - \frac{1}{2a_x} (\zeta_j f_{2i+1j} - \zeta_j f_{2ij}) - c_{i+1/2j} \theta_{1i+1/2j} (\frac{\partial f_0}{\partial \zeta})_{i+1/2j} (1 - \alpha_{i+1/2j}) \right)$$

$$f_{1ij+1/2}^{*} = \beta_{ij+1/2} \left(\frac{f_{1ij+1} + f_{1ij}}{2} - \frac{1}{2a_{\zeta}} (E_i f_{2ij+1} - E_i f_{2ij}) - \bar{c}_{ij+1/2} \theta_{2ij+1/2} (\frac{\partial f_0}{\partial x})_{ij+1/2} (1 - \beta_{ij+1/2}) \right)$$

$$\alpha_{i+1/2j} = \frac{2a_{\mathsf{x}}\zeta_j^3}{2a_{\mathsf{x}}\zeta_j^3 + \sigma_{i+1/2}\Delta \mathsf{x}}, \qquad \beta_{ij+1/2} = \frac{2a_{\mathsf{x}}\zeta_{j+1/2}^3}{2a_{\mathsf{x}}\zeta_{j+1/2}^3 + \sigma_i\Delta\zeta}.$$

 \hookrightarrow c and \bar{c} are fixed to obtain the correct limit equation

$$c_{i+1/2j} = rac{E_{i+1/2}\Delta x}{3a_x}, \qquad ar{c}_{ij+1/2} = rac{\zeta_{j+1/2}\Delta \zeta}{3a_\zeta}$$

with

General model

Upwinding depending of the sign of $c_{i+1/2j}$ and $\bar{c}_{ij+1/2}$

$$\bar{c}_{ij+1/2} (\frac{\partial f_0}{\partial x})_{ij+1/2} \approx \bar{c}_{ij+1/2} \frac{f_{0i+1j+1} - f_{0ij+1} + f_{0i+1j} - f_{0ij}}{2\Delta x},$$

$$(c_{i+1/2j}(rac{\partial f_0}{\partial \zeta})_{i+1/2j} pprox \left\{ egin{array}{ll} c_{i+1/2j} rac{f_{0i+1j} - f_{0ij+1} + f_{0ij} - f_{0ij-1}}{2\Delta \zeta} & ext{if } c_{i+1/2j} < 0, \ c_{i+1/2j} rac{f_{0i+1j+1} - f_{0i+1j} + f_{0ij+1} - f_{0ij}}{2\Delta \zeta} & ext{if } c_{i+1/2j} > 0. \end{array}
ight.$$

 $\hookrightarrow \theta_{1i+1/2j}$ and $\theta_{2ij+1/2}$ fixed to ensure the admissibility conditions.

Admissibility property

If $U_{i,j}^n \in \mathcal{A}$ then $U_{i,j}^{n+1} \in \mathcal{A}$ under the CFL condition $\Delta t \leq \frac{\Delta \zeta \Delta x}{2a_x \Delta \zeta + 2a_\zeta \Delta x}$.

Consistency in the limit regime

Numerical test cases: diffusive regime

Initial conditions

$$f_0(0, x, \zeta) = \begin{cases} 1 & \text{if } x \le L/3, \\ 0 & \text{if } L/3 \le x \le 2L/3, \\ 1 & \text{if } L/3 \le x, \end{cases} \qquad f_1(0, x, \zeta) = 0.$$

Periodical boundary conditions, $\alpha_{ei} = 10^4$ and E = 0.

Numerical test cases: diffusive regime

Periodical boundary conditions, $\alpha_{ei} = 10^4$ and E = 1.

Initial conditions

$$\begin{cases} f_0(0, x, \zeta) = \zeta^2 \exp(-x^2) \exp(-2(\zeta - 3)^2), \\ f_1(0, x, \zeta) = 0. \end{cases}$$

Figure: f_0 profile at initial time.

Numerical test cases: diffusive regime

Figure: f_0 profile at time t=1 (top), t=50 (middle), t=100 (bottom), for the HLL scheme (left), the AP scheme (middle) and the diffusion equation (right), ($\alpha_{ei} = 10^4$).

Numerical test cases: Electron beams interaction

Duclous, Dubroca, Filbet and Tikhonchuk. J. Comput. Phys. (2009)

Sébastien GUISSET

Numerical test cases: non-constant collisional parameter

Linear profile: $\alpha_{ei}(x) = ax + b$, $\alpha_{ei}(x_{min} = -40) = 5 \cdot 10^3$, $\alpha_{ei}(x_{max} = 40) = 10^5$.

Self-consistent electric field: $E = -\partial_x T$.

1. Modelling in plasma physics: the angular moments models

2. Numerical methods for the study of the particle transport on large scales

3. First step towards multi-species modelling: the angular ${\it M}_1$ model in a moving frame

4. Conclusion / Perspectives

Sébastien GUISSET

²⁹Collaboration with D. Aregba-Driollet

First step towards multispecies modelling

 \hookrightarrow Change of velocity frame^{30,31}

Interests:

- Velocity grid reduction
- Simplification of the collisional operators
- Galilean invariance property for angular moments models

Velocity change of variable

$$c = v - u(t, x), \qquad f(t, x, v) = g(t, x, c).$$

Kinetic equations

$$\partial_t f + div_x(vf) = C(f),$$

$$\hookrightarrow \ \partial_t g + div_x((c+u)g) - div_c((\partial_t u + \partial_x u(c+u))g) = C(g).$$

\hookrightarrow Evolution equation for u ?

³⁰F. Filbet and T. Rey J. Comp. Phys. (2013)

³¹A. Bobylev, J. Carrillo and I. Gamba. J. Stat. Phys. (2000).

Sébastien GUISSET

First step towards multispecies modelling

Different choices of *u*:

Ion mean velocity

$$\partial_t(n^i u^i) + div_x(\int_{\mathbb{R}^3} f^i(v)v \otimes v \, dv) - q^i n^i E = \int_{\mathbb{R}^3} C_{ie}(v)v dv, \quad \frac{1}{n} \int_{\mathbb{R}^3} g(c)c dc = u^e - u^i.$$

 $\hookrightarrow \mathsf{Plasma} \ \mathsf{physics} \ \mathsf{applications}$

First step: one species of non-charged particles

Particles mean velocity (main difficulties of the multispecies case)
 Momentum equation

$$\partial_t(nu) + div_x(nu \otimes u + \int_{\mathbb{R}^3} g(c)c \otimes c \, dc) = 0, \qquad \int_{\mathbb{R}^3} g(c)cdc = 0.$$

 \hookrightarrow Rarefied gas dynamics applications

 $\hookrightarrow \mathsf{Heat}\ \mathsf{flux}$

Angular moments model

$\hookrightarrow \mathsf{Angular} \text{ moments extraction}$

The M_1 angular moment model

$$\begin{cases} \partial_t g_0 + div_x(\zeta g_1 + ug_0) - \partial_\zeta \left(\frac{du}{dt} \cdot g_1 + \zeta \partial_x u : g_2\right) = 0, \\ \partial_t g_1 + div_x(\zeta g_2 + ug_1) - \partial_\zeta \left(g_2 \frac{du}{dt} + \zeta g_3 \partial_x u\right) + \frac{g_0 I d - g_2}{\zeta} \frac{du}{dt} + \left(\partial_x ug_1 - g_3 \partial_x u\right) = 0, \end{cases}$$

where
$$\frac{du}{dt} = \partial_t u + (\partial_x u)u.$$

Evolution equation on *u*

$$\partial_t u + (\partial_x u)u + \frac{1}{n} div_x (\int_0^{+\infty} g_2(\zeta)\zeta^2 d\zeta) = 0.$$

 \hookrightarrow Closure relation for g_2 and g_3 .

Model properties

The M_1 angular moment model

$$\begin{aligned} \partial_t g_0 + div_x (\zeta g_1 + ug_0) - \partial_\zeta \left(\frac{du}{dt} g_1 + \zeta \partial_x u : g_2 \right) &= 0, \\ \partial_t g_1 + div_x (\zeta g_2 + ug_1) - \partial_\zeta \left(g_2 \frac{du}{dt} + \zeta g_3 \partial_x u \right) + \frac{g_0 I d - g_2}{\zeta} \frac{du}{dt} + \left(\partial_x ug_1 - g_3 \partial_x u \right) &= 0, \end{aligned}$$

with

$$\partial_t u + (u \cdot \partial_x)u + \frac{1}{n}div_x(\int_0^{+\infty} g_2(\zeta)\zeta^2 d\zeta) = 0.$$

- Godunov's symmetrisation³² (entropic variables³³): Friedrichs-symmetric system
- Conservation laws
 - Mass and energy conservation
 - Momentum conservation and zero mean velocity

$$\int_{0}^{+\infty}g_{1}(\zeta)\zeta d\zeta=0.$$

Galilean invariance (rotational and translational invariance)

 $^{32}\text{T.}$ Goudon, C. Lin. J. Math. Anal. Appl. (2013). $^{33}\text{D.}$ Levermore. J. Stat. Phys. (1996).

Sébastien GUISSET

 A_0 : fixed frame

 $\partial_t f + div_x(vf) = C(f)$

 B_0 : Uniform translation frame

$$\partial_t \tilde{f} + div_{\tilde{x}}(\tilde{v}\tilde{f}) = C(\tilde{f})$$

 $\begin{array}{c|c}
\tilde{x} = x - st \\
\tilde{v} = v - s \\
\tilde{v} = v -$

A : Mobile frame

$$\partial_t g + div_x((c+u)g) - div_c [(\partial_t u + \partial_x u(c+u))g] = C(g)$$

 B_0 : Uniform translation frame

$$\partial_t \tilde{f} + div_{\tilde{x}}(\tilde{v}\tilde{f}) = C(\tilde{f})$$

 $\begin{array}{c|c}
\tilde{x} = x - st \\
\tilde{v} = v - s \\
\tilde{v} = v -$

A : Mobile frame

 B_0 : Uniform translation frame

$$\partial_t \tilde{f} + div_{\tilde{x}}(\tilde{v}\tilde{f}) = C(\tilde{f})$$
$$\tilde{c} = \tilde{v} - \tilde{u}(t, \tilde{x})$$
$$n\tilde{u}(t, \tilde{x}) = \int_{\tilde{v}} \tilde{f}\tilde{v}d\tilde{v}$$

B : Uniform translation Mobile frame

$$\begin{aligned} \partial_t g + div_x((c+u)g) & \partial_t \tilde{g} + div_{\tilde{x}}((\tilde{c}+\tilde{u})\tilde{g}) \\ -div_c \big[(\partial_t u + \partial_x u(c+u))g \big] &= C(g) & -div_{\tilde{c}} \big[(\partial_t \tilde{u} + \partial_{\tilde{x}} \tilde{u}(c+\tilde{u}))\tilde{g} \big] &= C(\tilde{g}) \end{aligned}$$

 δ

Numerical schemes

One-dimension spatial framework with a BGK collision operator

$$\begin{aligned} \partial_t g_0 + \partial_x (\zeta g_1 + ug_0) - \partial_\zeta \Big(\frac{du}{dt} g_1 + \zeta \partial_x ug_2 \Big) &= \frac{1}{\tau} (M_{g_0} - g_0), \\ \partial_t g_1 + \partial_x (\zeta g_2 + ug_1) - \partial_\zeta \Big(\frac{du}{dt} g_2 + \zeta \partial_x ug_3 \Big) + \frac{du}{dt} \frac{g_0 - g_2}{\zeta} + \partial_x u(g_1 - g_3) &= -\frac{1}{\tau} g_1, \end{aligned}$$

with

$$M_{g_0} = \zeta^2 4\pi n \left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{m\zeta^2}{2T}\right),$$

and

$$n=\int_0^{+\infty}g_0d\zeta,$$
 $T=rac{m}{3n}\int_0^{+\infty}g_0\zeta^2d\zeta.$

 \hookrightarrow Suitable numerical scheme?

Numerical schemes

Intermediate state

$$\begin{cases} \partial_t g_0 - \partial_{\zeta} (\frac{du}{dt} g_1 + \zeta \partial_x u g_2) = 0, \\ \partial_t g_1 - \partial_{\zeta} (\frac{du}{dt} g_2 + \zeta \partial_x u g_3) = 0. \end{cases}$$

Underlying kinetic equation

$$\partial_t g(\zeta) + \partial_{\zeta} (\mathbf{b}(\zeta)g(\zeta)) = 0,$$

with
$$b(\zeta) = -(\frac{du}{dt}\mu + \zeta \partial_x u\mu^2).$$

\hookrightarrow Variable coefficient scalar equation

Conservative scheme

$$rac{g_{j}^{n+1}-g_{j}^{n}}{\Delta t}+rac{h_{j+1/2}^{n}-h_{j-1/2}^{n}}{\Delta \zeta}=0,
onumber \ h_{j+1/2}^{n}=b_{j+1/2}^{-}g_{j+1}^{n}+b_{j+1/2}^{+}g_{j}^{n}, \qquad b^{\pm}=rac{1}{2}(b\pm|b|).$$

with

Sébastien GUISSET

Numerical scheme

Angular moments extraction

$$rac{U_j^{n+1}-U_j^n}{\Delta t}+rac{G_{j+1/2}^n-G_{j-1/2}^n}{\Delta\zeta}=0,$$

with

$$\begin{split} U_{j}^{n+1} &= \begin{pmatrix} g_{0j}^{n+1} \\ g_{1j}^{n+1} \end{pmatrix}, \qquad G_{j+1/2}^{n} &= \frac{1}{2} \Big[\frac{du}{dt} \begin{pmatrix} g_{1j+1}^{n} + g_{1j}^{n} \\ g_{2j+1}^{n} + g_{2j}^{n} \end{pmatrix} + \zeta_{j+1/2} \partial_{x} u \begin{pmatrix} g_{0j+1}^{n} + g_{0j}^{n} \\ g_{1j+1}^{n} + g_{1j}^{n} \end{pmatrix} \\ &+ (|\frac{du}{dt}| + ||\zeta||_{\infty} |\partial_{x} u|) \begin{pmatrix} g_{0j+1}^{n} - g_{0j}^{n} \\ g_{1j+1}^{n} - g_{1j}^{n} \end{pmatrix} \Big]. \end{split}$$

← Admissibility requirement under CFL condition

- Same procedure for the spatial derivative
- Standard discretisation for the source terms and collisional terms

 \hookrightarrow Admissibility for the complete scheme under reduced CFL condition

Sébastien GUISSET

Numerical result: temperature gradient

Conclusion

Plasma physics modelling

- ▶ Better understanding of the validity regimes of *M*₁ and *M*₂ angular moments models for collisionless plasma applications
- Appropriate collisional operators for the electronic M_1 model

Adapted numerical methods for the study of the large scale particles transport

- Study of numerical resolution of the electronic M₁ model in the quasi-neutral limit
- Study of numerical resolution of the electronic M_1 model in the diffusive limit

First step towards multi-species modelling

▶ Angular *M*₁ model in a moving frame

Perspectives

Modelling in plasma physics

Transport coefficients considering magnetic fields³⁴

Numerical methods for the study of the large scale particles transport

- Extension for electron-electron collision operator
- Uniform consistency / high order extensions
- Modified HLL schemes for diffusive regimes³⁵
- Asymptotic-preserving scheme for the quasi-neutral and diffusive limits

Angular M_1 model in a moving frame

- Discrete energy conservation / discrete zero mean velocity
- Motion of heavy and light particles (ions and electrons)
- Easier and more systematic derivation of Galilean invariant minimum entropy moment systems ³⁶

Sébastien GUISSET

³⁴Braginskii, Reviews of Plasma Physics (1965).

³⁵Collaboration with C. Chalons.

³⁶M. Junk and A. Unterreiter, Cont. Mech. Thermodyn. (2002).

Thank you

Uniform consistency

Figure: L_1 error as function of $1/\alpha_{ei}$ in log scale (Relaxation of a temperature profile at time t = 10).

Limit of the M_1 model

 \hookrightarrow Perturbative analysis (linearisation) and comparison with Vlasov.

Linearisation around an equilibrium state

$$f_0(t, x, \zeta) = F_0(\zeta) + \delta F0(t, x, \zeta),$$

$$f_1(t, x, \zeta) = F_1(\zeta) + \delta F1(t, x, \zeta).$$

Space and time Fourier transform

$$\hat{f}(\omega,k) = rac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(t,x) e^{i(\omega t - kx)} dx dt.$$

 \hookrightarrow dispersion relation derivation

Electron beams interaction (different velocities)

Relevance for laser-plasma interaction

Initial conditions:

$$f(t = 0, x, v) = \frac{1}{2}(1 + A\cos(kx))\exp(-(v + v_1)^2) \qquad 4$$

+ $\frac{1}{2}(1 - A\cos(kx))\exp(-(v + v_2)^2), > 0$
-2
 $E(0, x) = 0.$

 \hookrightarrow Correct dispersion relation

Landau damping

Interest in plasma physics and galaxy dynamics

 \hookrightarrow Perturbation of an isotropic Maxwellian

- Two population M_1 model: $f = f^+ + f^-$
- ▶ *M*₂ model: higher order moments model

Laser-plasma absorption (collisionless skin effect)

Electromagnetic configuration

 \hookrightarrow Absorption coefficient derivation ³⁷

 $\hookrightarrow M_1$ model: not able to see the absorption phenomenon.

 \hookrightarrow Limit of the two populations M_1 and M_2 models³⁸.

³⁷W. Rozmus, V. T. Tikhonchuk and R. Cauble. Phys. of Plasmas (1996).
 ³⁸S. Guisset, J.G. Moreau, R. Nuter, S. Brull, E. d'Humières, B. Dubroca, V.T. Tikhonchuk. J. Phys. A: Math. Theor. (2015).