Etude du couplage du modèle aux moments M1 et des équations de Maxwell.

Bruno Dubroca, Stephane Brull, Emmanuel d'Humières

Guisset Sébastien

- Production d'énergie : Fusion par confinement inertiel.
 → Plasmas chauds et denses.
- Expériences en laboratoire difficiles et coûteuses.
 → Simulation numérique particulièrement utile.
- Résolution numérique des équations.

 $\hookrightarrow \text{Besoin de méthodes numériques précises, robustes et} \\ \text{rapides.}$

• Étude du transport de particules dans un plasma chaud.

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Somm	aire			

- 2 Le modèle M1
- 3 Cas test : Double faisceau
 - Problème considéré
 - Résultats

4 Schéma Asymptotic-Preserving

- Processus collisionnels
- Problème du schéma classique
- Reformulation de l'équation de Maxwell-Ampère
- Cas test de Batishchev

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Introdu	uction			

Plasma : ensemble d'atomes partiellement ou complètement ionisés.

Deux effets prédominent :

- Collisions entres particules.
- Effets électromagnétiques collectifs.

Grandeurs caractéristiques :

- Longueur de Debye : λ_{De}
- Libre parcours moyen : λ_{ei}

$$\alpha = \frac{\lambda_{De}}{\lambda_{ei}}$$

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Introdu	iction			

Description cinétique :

Caractérisation par une fonction de distribution : f(t, x, v)

 $\hookrightarrow \mathsf{R\acute{e}solution} \ \mathsf{de} \ \mathsf{l'\acute{e}quation} \ \mathsf{cin\acute{e}tique} \ \mathsf{Vlasov}\text{-}\mathsf{Fokker}\text{-}\mathsf{Planck} :$

$$\frac{\partial f}{\partial t} + \nabla_{x}.(vf) + \underbrace{\nabla_{v}.(\frac{q}{m}(E + v \times B)f)}_{\text{terme de force}} = \underbrace{C_{e,e}(f,f) + C_{e,i}(f)}_{\text{termes de collisions}}$$

Avantage : description précise Problème : temps de calcul trop long

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Introdu	uction			

Prise aux moments en vitesse (moyenne) Cinétique ⇒ Hydrodynamique

Description hydrodynamique :

Caractérisation par des grandeurs hydrodynamiques : ρ , T, u

Avantage : peu couteux Problème : description pas assez précise
 Introduction
 Le modèle M1
 Cas test : Double faisceau of modèle faisceau of modèle aux moments M1
 Conclusion et Perspectives of modèle faisceau of mo

Description intermédiaire (compromis) :

Prise aux moments en angle

Cinétique \implies Modèle aux moments M1

Avantages : Moins coûteuse que la description cinétique et plus précise que la description hydrodynamique.

Trois premiers moments de f par rapports à $\boldsymbol{\Omega}$:

$$\begin{split} f_0(\zeta) &= \zeta^2 \int_{S^2} f(\Omega,\zeta) d\Omega, & S^2 \text{ la sphère unité} \\ f_1(\zeta) &= \zeta^2 \int_{S^2} f(\Omega,\zeta) \Omega d\Omega, & \Omega = \frac{\vec{v}}{|v|} \text{ direction de propagation} \\ f_2(\zeta) &= \zeta^2 \int_{S^2} f(\Omega,\zeta) \Omega \otimes \Omega d\Omega. & \zeta = |v| \end{split}$$

Introduction Le modèle M1 Cas test : Double faisceau OCONO Cas test : Double faisceau OCONO Conclusion et Perspectives Conclusion et Perspectives

Par intégration par rapport à Ω l'équation cinétique devient 1 :

$$\begin{cases} \partial_t f_0 + \nabla_x (\zeta f_1) + \partial_\zeta \left(\frac{qE}{m} f_1\right) = Q_0(f_0), \\ \partial_t f_1 + \nabla_x (\zeta f_2) + \partial_\zeta \left(\frac{qE}{m} f_2\right) - \frac{qE}{m\zeta}(f_0 - f_2) = Q_1(f_1) + Q_0(f_1). \end{cases}$$

Détermination de f_2 en fonction de f_0 et f_1 : problème de minimisation d'entropie.

$$\min_{g\geq 0} \left\{ \begin{array}{l} \mathcal{H}(g) \ / \ \forall \zeta \in \mathcal{R}^+, \int_{\mathcal{S}^2} g(\Omega,\zeta) d\Omega = f_0(\zeta), \\ \int_{\mathcal{S}^2} \Omega g(\Omega,\zeta) d\Omega = f_1(\zeta) \end{array} \right\}$$

où
$$\mathcal{H}(g) = \int_{\mathcal{R}^3} [gln(g) - g] dv$$
 entropie de Boltzmann.

1. J. Mallet, S. Brull, B. Dubroca, C.I.C.P. 2013.

Le principe de minimisation d'entropie impose 2,3 :

$$f =
ho(\zeta)exp(-\Omega.a(\zeta)) \ge 0,$$

où $\rho(\zeta) \in \mathbb{R}^+$ et $a(\zeta) \in \mathbb{R}^3$.

Expression de f_2 :

$$f_2 = f_0\Big(\frac{1-\chi}{2} Id + \frac{3\chi - 1}{2} \frac{f_1}{|f_1|} \otimes \frac{f_1}{|f_1|}\Big), \text{ avec } \chi = \frac{|a|^2 - 2|a| coth(|a|) + 2}{|a|^2}.$$

2. G.N. Minerbo, J. Quant. Spectrosc. Radiat. Transfer, 1978.

3. B. Dubroca and J.L. Feugeas. C. R. Acad. Sci. Paris Ser. I, 1999.

Importance pour l'interaction laser-plasma.

Condition initiales :

$$f(0, x, v) = \frac{1}{2}(1 + A\cos(kx))\exp(-(v - v_d)^2) + \frac{1}{2}(1 - A\cos(kx))\exp(-(v + v_d)^2)$$

$$E(0, x) = 0$$

Représentation de la fonction distribution au temps initial et au temps final (30 τ_{pe}) :

Comparaison des résultats avec un code cinétique Fokker-Planck :

Linear regime (A = 0.001)0 log(E_elec) M1 -10 kinetic × -20 Non-linear regime (A = 0.1)0 0 -10 -10 M1 kinetic × -20 10 20 30 0 t/τ

12/22

Introduction Le modèle M1 Cas test : Double faisceau of Schéma Asymptotic-Preserving Conclusion et Perspectives

Adimentionnement utilisé pour les processus collisionnels :

$$ilde{t} =
u_{e,i}t, \quad ilde{x} = x/\lambda_{e,i}, \quad ilde{v} = v/v_{th}.$$

Système d'équations :

 $\begin{cases} \text{Modèle M1 adimentionné} \\ \frac{\partial E}{\partial t} - \frac{1}{\beta^2} \nabla_x \times B = -\frac{j}{\alpha^2}, \\ \frac{\partial B}{\partial t} + \nabla_x \times E = 0, \quad \text{avec} \quad \alpha = \frac{\lambda_{De}}{\lambda_{ei}} \quad \text{et} \quad \beta = v_{th}/c. \\ \nabla_x \cdot E = \frac{1}{\alpha^2} (1 - n), \\ \nabla_x \cdot B = 0. \end{cases}$

Equation de Maxwell-Ampère électrostatique :

$$\frac{E^{n+1}-E^n}{\Delta t}=-\frac{j^{n+1}}{\alpha^2}$$

Si $\lambda_{ei} >> \lambda_{De}$, quasi-neutralité : $\alpha \to 0$ $j^{n+1} \Longrightarrow 0$ $F^{n+1} = ?$

Condition de stabilité pour le schéma classique : $\Delta t pprox lpha$

Introduction Le modèle M1 Cas test : Double faisceau of Schéma Asymptotic-Preserving Conclusion et Perspectives

Equation d'évolution sur f_1 :

$$\frac{f_1^{n+1} - f_1^n}{\Delta t} + \nabla_x \cdot (\zeta f_2^n) + \partial_\zeta (\frac{qE^{n+1}}{m} f_2^n) - \frac{qE^{n+1}}{m\zeta} (f_0^n - f_2^n) = Q_0(f_1^n) + Q_1(f_1^n)$$

Courant électrique : $j = q \int_{\zeta} \zeta f_1 d\zeta$

$$\begin{cases} \frac{j^{n+1} - j^n}{\Delta t} = \beta_1(f_0, f_1)E^{n+1} + \beta_2(f_0, f_1)\\ \frac{E^{n+1} - E^n}{\Delta t} = -\frac{j^{n+1}}{\alpha^2}\\ E^{n+1} = \frac{-\frac{\alpha^2 E^n}{\Delta t^2} + \beta_2(f_0, f_1) + \frac{j^n}{\Delta t}}{-\frac{\alpha^2}{\Delta t^2} - \beta_1(f_0, f_1)} \end{cases}$$

Si $\alpha \to 0$ nous pouvons calculer E^{n+1} , Δt n'est pas contraint par α .

• Origines des méthodes Asymptotic-Preserving⁴.

Pas de nécessité de réduire (Δt , Δx) lorsque $\alpha \rightarrow 0$

4. S. Jin, SIAM J. Sci. Comp. (1999).

Introduction Le modèle M1 Cas test : Double faisceau of Conclusion et Perspectives coole of Conclusion

Relaxation d'un profil de température localisé.

5. O.V Batishchev & al Physics of Plasmas (2002).

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Résulta	ats			

Schéma classique instable!

Stable même si $\alpha = 0$.

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving ○○○○○●	Conclusion et Perspectives
Compa	raison			

Cinétique (Code OSHUN⁶) : 2 jours sur 80 processeurs. M1-AP : 3 minutes sur 1 processeur.

6. M. Tzoufras & al J. Comput. Phys. (2011).

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Conclu	sion			

- Couplage M1 Maxwell.
- Schéma AP validé sur deux cas tests limites :
 - Double faisceaux : effets collectifs importants.
 - Batishchev : effets collisionnels importants, $\alpha \rightarrow 0$.
- Schéma précis et très rapide.

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives
Perspe	ctives			

A court terme :

- Étude de stabilité du schéma AP.
- Champ magnétique.

A long terme :

- Mouvement des ions.
- Deux dimensions d'espace.
- Importance des effets cinétiques pour l'allumage par choc.

Introduction	Le modèle M1	Cas test : Double faisceau 00	Schéma Asymptotic-Preserving	Conclusion et Perspectives

Merci de votre attention